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ABSTRACT

The  different  classical  models  of  the  mechanical  waves  in  bars

cover  every  a  single  type  of  the  wave,  respectively  only  longitudinal,

transversal,  inflexion or torsion wave and only in a rectilinear bar, every

with  his  own  hypothesis,  physical  and  mathematical  description  and

solving methods. Into a curved bar a certain wave changes his form along

of  the bar and transformed  par example from a longitudinal  wave in  one

or more types of the another wave, dependent of the form of the bar, ramie

or  connection  with  the  environment.  This  work  presents  a  physical  and

mathematical  model  of  the  mechanical  wave  of  any  type  produced  and

conveyed in curved bars and his solving possibilities.

        

1. Introduction
A  rectilinear  bar  excited  periodical  at  a

certain place (par example at his  left  end, figure 1)

produces  and  conveys  waves,  dependent  of  the

excitation  and  the  bindings  with  the  environment.

Hereby appears longitudinal fig.  1a), transversal fig.

1b),  inflexion  fig.  1c)  or  torsion  waves  figure  1d).

The mathematical model of these waves is known and

ample described in [1]. 

Figure 1. Waves in rectilinear bar

2. Wave in curved bars
If the bar is not linear,  the  wave maintains

not  more  his  original  form from the  excited  point.

Along  of  the  curve  appear  geometrically

modifications  of  the  conduction  medium  which

transform a longitudinal wave, par example, in more

another  waves  through changes of the directions of

the elastically deformations in ratio with the axis of

the bar and through multiple reflections on the lateral

surfaces, how these appear very nearly in fig. 2.      

Not  a  physically  or  mathematically

model  describes  suchlike  waves.  In  order  to

obtain a usable  mathematical  model  we  need a

few hypotheses:

-the  bar  must  have  a  finite  transversal

section, constant or variable along of the bar;

-the  lateral  surfaces  of  the  bar  have  a

known form and equation;

-the  lateral  surfaces  of  the  bar  have

known connections with the environment.

Figure 2. The modification of the form of 

the wave in a curved bar
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The  mathematical  model  of  the  wave

can be written based on the generally differential

equations  Navier-Cauchy  [2]  in  Cartesian

coordinates, written in dynamical balance: 
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where  zyx σσσ ,,  =  normal  stress,

zxyzxy τττ ,,  =  tangential  stress  with  the

properties  xzzxzyyzyxxy ττττττ === ,, ,

zyx ggg ,,  =  mass  forces,  wvu ,,  =  the

absolute  displacement  on  the  coordinate

rectangular  axis,  ρ =  density,   t=  time.  On

the  lateral  surface  of  the  bar  appear  the

boundary  conditions,  respectively  the

influence of the environment:
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with  l,  m,  n components  on  x,  y,  z axis  of

the unit vectors of the perpendiculars on the

lateral  surfaces,  zyx ppp ,,  the  pressure  of

the  environment  on  the  lateral  surfaces

projected on the axis x, y, z.

The  upper  equations  are  completed

with  the  equations  dependent  from  the

constitution  of  the  material  of  the  bar  and

express  the  dependence  between  the

deformations and stress.  For bars from steel

these dependence are written [2]
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where  zyx εεε ,,  are  the  longitudinal

relative  deformations,  zxyzxy γγγ ,,  are  the

transversal  relative  deformations,  G=shear

modulus,  µ=Poisson factor,  mε  the average

deformation

3
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εεε
ε

++
=                (4)

The shear modulus can be expressed

( )µ+
=

12

E
G                    (5)

with  E  =  modulus  of  the  elasticity.  The

relative  longitudinal  and  transversal

deformations  can  be  written  as  functions

from absolute displacements wvu ,,
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Through  a chain  substitution  in  the

equations from (1) to (6) we obtain a differential

equations  system  from  second  order  with

unknown  functions  wvu ,, ,  as  functions

dependent from the coordinates x, y, z,   time

t,  mechanical  and physical  properties of the

material,  primary  and  boundary  conditions,

geometry  of  the  bar.  The  mechanical  and

physical  properties  of the  material  change  only

the equations (3) and the value of the density ρ. 
The  hereby-obtained  equations  system

is very difficult  to  solve  on analytical  way and

therefore I have chosen a numerical way in order

to find the solutions as four variable functions 

( ) ( ) ( )tzyxwtzyxvtzyxu ,,,,,,,,,,, ,

respectively the finite differences method.

The entire  bar  is  divided in  very  little

finite  domains  and the  time  is  alike  divided in

very little intervals. The domains are numerated

along of the each axis and have the index number
itiziyix ,,,  on  the  axis  x,  y,  z and  time  t,

nx21ix ,,, ⋯= ,  ny21iy ,,, ⋯= ,  nz21iz ,,, ⋯= ,

.3,2,1it =  The  numbers  ,nx  ,ny  nz  are  the

maximal  values  of  the  index  number.  The

continuous  functions  ( ),,,, tzyxu  ( ),,,, tzyxv

( ),,,, tzyxw become discrete functions:
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( ) ( ) ( )
itiziyixiiziyixitiziyix wtvu

tzyxwtzyxvtzyxu

,,,,,,,,, ,,

,,,,,,,,,,,

→

→
     (7)

respectively  on  the  discontinuous  domain
iziyix ,,  and at the time interval it .

All  derivatives  from  the  differential

equations system are in ratio with x, y, z or time t.

Generally,  the  finite  differences  method

transforms  the  derivatives  in  finite  differences

from more types, respectively backward, forward

or central differences. 

The  derivatives  in  ratio  with  the  time

appear only as derivative from second order and I

have  chosen  backward  differences  because

always  are  known  all  anterior  solutions.  The

differential  t∂  becomes  a  little  finite  value

written  tδ  and the derivatives in ratio with

the time  t become
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The  index  number  3it =
corresponds  to  the  current  moment  and

index  numbers  2it = ,  1it =  correspond  to

the  first  and second  previous  moments.  The

derivatives  in  ratio  with  the  coordinate’s  axis

appear from first and second order. I have chosen

only central and symmetrical differences in ratio

with  the  coordinates  and  obligatory  at  the  first

previous  moment,  2it = ,  in  order  to  obtain

only  explicit  equations  in  ratio  with  the

currently  displacements  3iziyixu ,,, , 3iziyixv ,,, ,

3iziyixw ,,, .  The  derivatives  from  first  order

becomes in finite differences:
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and  the  derivatives  from  second  order

becomes:
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The  mixed  derivatives  calculated  for

example
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 The  other  mixed  derivatives  are  to

calculate analogous to (10).

3. Example
  I have chosen a plane curved bar (z=0),

figure 3, excited at his left end.  
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Figure 3. The curved bar
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In  order  to  maintain  the  Cartesian

coordinates and the upper described equations on

entire bar I have chosen the division of the bar

only in rectangular finite elements, including the

curved domain, figure 4. 

The  transversal  section  of  the  bar  is

rectangular  and  contains  a  single  row of  finite

elements  zh δ= on  the  origin  of  the  axis z,

figure 2. In this case the axis Oz is not in use and

the derivatives in ratio with this axis appear not

more  in  the  equations.  The  finite  elements

presented in figure 4 are many greater as in

reality,  in  order  to  see  clearly  how  is

approximated the bar on the curved domain.

In  reality  the  approximation  is  better  as  in

figure 4.

The dimensions of the bar are:  =1l 50

mm, =2l 50mm,  =R 15mm,  =b 10mm,

h=1mm,  ρ=7850Kg/m3,  211 m/N101.2E ⋅=

. The mass forces zyx ggg ,,  are negligible.

The left  end of the bar is harmonically

excited with the function: 

( )
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3iy1ix

3iy1ix
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          (11)

with  A=0.1 mm, ω=1250000s-1,  respectively

a high frequency chosen in order to produce

in  the  bar  more  wavelength.  The  equation

(11)  represents  withal  the  boundary

conditions on the left side of the bar. 

The finite elements of the bar have the

value  =xδ 1mm,  =yδ 1mm,

( ) ( )ωπδ 10002t =  sec,  namely  thousand

times  littler  as  the  oscillation  period,  in

order  to  assurance  the  stability  of  the

computation [4]. The calculation length is 2

periods of the excitation.

In  computation  process  are  counted

only  the  dark  designed  finite  elements,  the

limit  values  of  the  index  numbers  xi  and

yi  at boundary are calculate adequately. 

On boundary  surfaces  must  be  used

the  equations  (2)  but  this  fact  is  very

difficult  because  of  the  numerous  corners

produced  from  the  finite  domains.  I  have

chosen a easier  way, respectively I consider

the  entire  rectangular  domain  from  xy nn ×

finite  elements.  The  linear  boundary

surfaces are easy in ratio with equations (2)

and  the  outsider  elements  from  bar  (white

elements,  figure  4)  are  very  soft  in  ratio

with the bar, ρ=0.1 Kg/m3, 2m/N1.0E = .  
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Figure 4. The finite elements

Figure 5. Oscillations and  movement

trajectory in the point 70i,10i yx ==
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In  the  figure  5  and  6  are  presented

the  oscillations  on  the  different  points  of

the  bar  and  the  trajectory  of  the  material

particle  from  these  points.  Near  excited

end,  figure  5,  the  movement  begins  early

and  the  trajectory  is  influenced  from direct

waves  and  many  reflections  on  more

surfaces  with  more  different  angles,

especially on the curved domain. 

Near other  end,  figure  6,  the  movement

begins  later  and  the  trajectory  shows  a

dominant  direction because  reflections  only

on a few certain surfaces as majority cause.

In  another  any  point  the  movement  and

trajectory depend from the directions of the

reflected  and  direct  waves.  The  amplitude

can be greater or lower,  dependent from the

phase  ratio  of  the  arrived  waves.  In  the

upper  cases  the  maximal  amplitude  is  0.25

mm, constant on all directions.      

4. Conclusions
The  finite  difference  method  solves  the

problems  of  the  dynamic  easier  and  faster

as  finite  element  method,  because  this  last

method  uses  very  large  equations  system.  I

have  applied  the  finite  difference  method

under  the  form of the  explicit  equations,  in

order  to  obtain  directly  the  currently

solution  in  each  point  of  the  bar.  I  have

encircled the bar with a rectangular domain,

easy  to  be  solved  on  the  boundary  surfaces

and  the  addition  material  are  properties

which  not  influences  the  comportment  of

the  bar.  Disadvantageous  is  the  hazard  of

the instability of the solution, resolved with

very little time finite difference and the low

precision,  resolved  with  more  finite

elements. 

The  vibrations  into  curved  bar  appear

under  multiple  influences,  respectively

direct  wave  and  more  reflected  waves  on

any  possible  surfaces.  The  interference

between these different waves can produces

the  increase  or  decrease  of  the  resulted

oscillation,  different  from  the  point  to

point.      

The  results  are  obtained  on  a  Pentium

IV  PC  programmed  from  the  author  in

DELPHI 6.  
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Figure 6. Oscillations and movement

trajectory in the point 32i,70i yx ==


