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ABSTRACT

In this paper the author present a set of  mathematical models, usable to simulate  
and analyse the static and dynamic behaviour aspects, both for the passive anti-
vibrational and anti-seismical systems, and for all the machines and equipments  
that have movements on the unarranged roads, in the length time of a technological  
process.  For all  the considered models the author have write the characteristic 
system of movement equations and present the numerical simulation results, with  
taking  into  account  the real  equipments  input  data.  The  author  was  maded an  
analysis  about  the  influences  of  the  non-linear  type  stiffness  on  the  dynamic  
behaviour  of  the  antivibrational  and antiseismical  passive  isolation  equipments,  
with the impact on the dynamic performances of these protection systems. Also, it  
was analyse and evaluate the static and dynamic characteristics of these systems  
because  it  is  very  important  to  protect  both  the  human  resources,  and  the  
equipments, against vibratory pollution or seismical waves.

1. Introduction
The problematics of the antivibrational  and 

antiseismical isolation for the sensitives machineries 
and  equipments  supposes  the  presence  of  the 
specialised  systems  for  reduce  or  eliminate  the 
transmission phenomenon of the vibrations produced 
by the certain source, to the machinery or equipment 
with  the  necessary  continous  operating  state, 
regardless to the environment conditions. Taking into 
account the operating way of the isolation ssytems, 
these could be divided into the next classes:
 passive  systems -  the  functional  parameters 

that  global  characterised  the  isolation 
capacity,  are  imposed  only  by  the  stiffness 
and  dissipative  characteristics  of  the  elastic 
components of the isolation systems

 active  (adaptive)  systems -  these  systems 
contained,  beside  on  the  effective  isolation 
components,  the  complex  sub-system  for 
aquisition,  processing  and  adjustment  the 
elastic  and  dissipative  characteristics  of  the 
isolators;  entire  the  components  aquire 
continously  the  specific  parameters  of  the 
vital  equipments  and  make  the  necessary 
adjustments, on the real time, with the aim of 

the  reducing  the  vibration  transferability 
factor

The  actual  researches  for  finding  optimal 
anti-seismic  an  anti-vibrational  protection  solutions 
are straightening to the few areas of activity: the first 
area of research is the base isolation of buildings or 
theirs  parts,  against  the  vibrations  and  earthquake 
actions.  The second area of activity,  in anti-seismic 
protection domain, is the isolation of vital equipments 
of  public  buildings endowment,  against  the seismic 
waves or disturbing vibrational movements.

All  the  systems  achieved  and  used  for 
passive anti-seismic and antivibrational protection of 
vital equipments, until present, are characterized both 
through the elastic performances according to obtain 
necesary  natural  frecquency  (lowest  values)  on 
direction of dynamic degrees of freedom, and through 
the  dissipative  performancies  so  that  the  energy 
damping should substantial decrease the shock impact 
on the seismical wave direction.

In essence,  antiseismic systems are based on 
suitable  ensembling  of  individual  elements  or  sub-
systems,  with  proper  elastic  and  damping 
characteristics,  so  that  at  standard  dynamic  loads 
spectral  composition should be avoid the resonance 
dangerous phenomenon.
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One way of characterize this systems is the 
isolation  degree.  In  this  work   the  author  treat  the 
problem  of  seismic  isolation  for  vital  equipments 
from public  building  endowment,  using  a  new and 
innovator  anti-seismic  leaning  system.  One  of  the 
proposed scope of this entire research is obtaining the 
isolation degree values over the 90%.

In this paper are treats only one passive type 
of   isolation  system.  The working  principle  of  this 
systems  are  based  on  the  elastic  capability  of  the 
rubber elastic elements to assume the exciting loads 
energy and transforming it into the potential energy. 
In  figure 1 it  is  presented a 3D model  of  the anti-
vibrational system that will be analysed in this paper.

Figure 1. Antivibrational passive elastic system 
with special complex configuration

The nomenclature used in this paper are
a denote distances between the gravity center and 

the springs along the Ox axis;
b denote distance between the application point of 

the  external force and the Oy axis;
F1,  F2 denote  springy  forces  that  replace  the 

external P force;
J denote  the  moment  of  inertia  of  the  isolated 

system;
k1, k2 denote stiffness constants of the springs;
m denote the mass of the isolated system;
P denote concentrated external force;
ϕ denote angular degree of freedom for the isolated 

system;
J1, J2 denote the moments of inertia of the isolated 

system and the base (isolators included)
m1, m2 denote the masses of the isolated system and 

the base (isolators included)
ϕ1, 2 denote  angular  degree  of  freedom  for  the 

isolated system and the base

2. Computational Models
The first proposed model have two degree of 

freedom,  namely  translation  between  Oy  axis  and 
angular movement along the center of gravity into the 
Oxy plane.  This physical  model is  presented in the 
figure 2.

For write the characteristic equations of this 
model that considered the next arrays: matrix of the 
inertial  characteristics  M,  generalized  movements 
vector  q,  the  stiffness  matrix  K and external  loads 
vector L, with the next forms
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Figure 2. Physical model of isolation system - vs.I

With  these  notations,  the  mathematical 
model of the system presented in figure 1, is

LqKqM =+ (5)

From eq. (3) it can be observed that both the 
system  equations  are  coupled,  and  for  separating 
them it must accomplish the next condition

k1 = k2 = k (6)

The  author  considered  that  even  all  the 
elastic  elements  have  the  same  type  and  operting 
caracteristic, in the real mode it could be differents, 
and of this motive, the link between the two variable 
k1 and k2 are

αα kkk == 12 (7)
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where α is the geometric non-linearity coefficient.
Taking into account the design mode of the 

real  system for  vibration  isolation  and the  working 
profile  of  these,  the  first  proposed  model  could  be 
modified through adoption of the next hypothesis: the 
numerical analysis will be maded with consider only 
the  plane  movements  (in  transverse  plane  of  the 
system): displacements along the Oy axis and angular 
displacements along the center of gravity of masses 
m1  and  m2.  Thus,  in  figure  3  it  is  presented  the 
physical model.
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Figure 3. Physical model of isolation system - vs.II

For write the characteristic equations of this 
model that considered the next arrays: matrix of the 
inertial  characteristics  M,  generalized  movements 
vector  q,  the  stiffness  matrix  K and external  loads 
vector L, with the next forms
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With this notations the mathematical model 
of the system presented in figure 3, are

LqKqM =+ (12)

From eq. (10) it  can be observed that both 
the system equations are coupled, and for separating 
them it must accomplish the condition from eqn. (6).

The  author  considered  that  even  all  the 
elastic  elements  have  the  same  type  and  operting 
caracteristic, in the real mode it could be differents, 
and of this motive, the link between the two variable 
k1 and k2 is shown by the eqn. (7) 

The  values  k1 and  k2 of  the  stiffness  have 
constant values, but in real mode, the behaviour of the 
materials not respect the Hooke's law. With the other 
words, in real mode, the elastic element from system 
structure,  have  a  non-linear  characteristic.  In  this 
study,  based  on  the  experimental  analysis  for  used 
elastic  elements,  the  author  consider  that  this 
characteristic could be write

2)(''')( txkktkk +== (13)

or the elastic force expresion

3)('')(')( txktxktFeFe +== (14)

For  numerical  simulation  the  dynamic 
behaviour of the proposed anti-vibrational  system it 
was taken two case of external loads:

 first  case  is  an  harmonical  force  with 
constant magnitude and frequency

)2sin()( tfAtP π= (15)

 second case is an seismical wave type, with 
time length about 3,5 sec

( )

( ))130sin(25,0)5,5935sin(3,0
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tt
etP t
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(16)

The diagram for the last type of the exciting 
force are presented in the figure 4.
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Figure 4. Temporal evolution of 
a simulated seismical wave

3. Computational Dynamics Results
For  numerical  simulation  of  the  dynamic 

behaviour,  the author  using the  next  values for  the 
constants  that  appear  in  the  mathematical  model 
(Table 1).

Table 1. Numerical values of the models
constant name value units
mass - m 100 kg
moment of  
inertia - J 10000 kgm2

mass - m1 100 kg
moment of  
inertia - J1

10000 kgm2

mass - m2 500 kg
moment of  
inertia - J2

200000 kgm2

distance - a 1 m
distance - b 1 m
coefficient α 2 -
stiffness - k1 100...10000 N/m

(a)

(b)
Figure 5. The influences of the α coefficient about the 

system displacements [a- y(t); b- ϕ(t)]

Based on the first proposed model (presented 
in the fig. 2) the author was analysis the influence of 
the coefficient  α about the displacements y(t) and  ϕ
(t), and was observed that at the same time of the  α 
growing,  bring  up  the  modulation  magnitudes  both 
for the linear, and for the angular movements. 

Also,  the  eigen  frequency  for  both 
deplacement  types  of  the  mass  m acquire  the  high 
ranking values. These facts could be observed in the 
figure  5.  In  the  first  case  was used  the harmonical 
type of exciting force (eq. 15).

For  the  case  of  seismical  wave  form,  the 
influences of the α coefficient about the deplacement 
shapes, could be view in the figure 6. Analysing this 
last set of diagrams, it could be say that the influence 
of  the  geometrical  non-linearity  are  piffling  in  the 
time  of  external  load  acting,  after  that  the  system 
evolve  to  the  stability  in  different  ways,  as  the  α 
coefficient has null or not.

(a)

(b)
Figure 6. The influences of the α coefficient about the 

system displacements, in the case of seismical type 
load [a- y(t); b- ϕ(t)]

Eigen  values  and  eigen  vectors  for  the 
presented system was computed with the well known 
expresion

( ) { } { }02 =− µλ MK (10)
and was obtained the next values

[ ]026637,0003363,3=λ (11)
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The  influences  of  the  real  stiffness 
characteristic (eq. 13) was analysed through consider 
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the k' value constant and impose that the k'' stffness 
value have a variance between [0, 20000] N/m3. In 
this  case  it  was  considered  the  second  proposed 
model - presented in the figure 3.

The  result  of  the  numerical  simulation  for 
this non-linear analysis is presented in figure 7.

Natural  values  and  eigen  vectors  for  the 
presented system was computed with the expresion

( ) { } { }02 =− µλ MK (13)
(similar with the eqn. 10 of the first model) and was 
obtained the next values

[ ]129 1012.01013.0028,06035,3 −− −−=λ (14)
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Figure 7. The influences of stiffness non-linearity 
on the system displacements

(a)

(b)
Figure 8. Temporal evolution of 

the system displacements for k1=100N/m
In the figures 8, 9, 10 it is presented a set of 

diagrams for the vertical deplacement - a - and of the 
angular  movement  of  the  gravity  center  -  b,  with 
considering the case of the seismical wave form load 
(eq.  16)  -  simulations  was  developed  on  second 
model. The difference between the three cases consist 
from the k1 value. It was presented the same type of 
deplacement in the same diagram, thus: thick line for 
y1(t),  respective  ϕ1(t),  and  sleazy  line  for  y2(t), 
respective ϕ2(t).

(a)

(b)
Figure 9. Temporal evolution of 

the system displacements for k1=3000N/m

(a)

(b)
Figure 10. Temporal evolution of 

the system displacements for k1=20000N/m

Certainly that  the  signal  of  mass  m2,  where  it  was 
applied the external force, have approximate the same 
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movement like seismical wave, but it could be viewed 
that  the  mass  m1 displacements  are  strongly 
influenced by the k1 and k2 stiffness values. At one 
time with increasing the stiffness values, growing the 
relative magnitude of the y2(t), respective ϕ2(t) signals 
(figure 10).

4. Concluding Remarks
Taking into account the numerical results, a 

sets presented in this paper, and considering that the 
model  will  be  tunned  with  experimental  data,  we 
could say that this physical and mathematical model 
are very useful for analysing the dynamic behaviour 
of  the  passive  elastic  isolation  system  against  the 
nocive effects of  the vibrations or seismical  waves. 
Also, this model must be completed with a spectral 
analysis  for obtained exactly informations about the 
spectral composition of the y(t) and ϕ(t) signals. This 
informations  help  designers  to  avoid  the  dangerous 
phenomenon of resonance, that could be appear not 
only for the eigen value of system frequency, and for 
the  high  values  of  external  loads  frequencies  that 
concur with the superior harmonics of the system.

This paper is a part of a large research study 
which  consist  by the  analysis,  both  mathematical  - 
numerical,  and  experimental,  of  antiseismic  and 
antivibrational  passive  isolation  systems,  with 
multiple  special  configurations,  taking  into  account 
the real characteristics of external loads and of rubber 
elements  from  the  isolation  system  structure.  The 
final  purpose of  this  study consist  by achieving all 
necessary  information  about  this  kind  of  passive 
isolation system, thus that, these could be used in any 
place where is imposed the need of protection against 
vibrations or seismic waves.

If these models will be tunned with existing 
experimental data, we could say that this physical and 
mathematical model are very useful for analysing the 
dynamic  behaviour  of  the  passive  elastic  isolation 
system against the nocive effects of the vibrations or 
seismical  waves.  And   completed  with  a  spectral 
analysis numerical routine, it getting very usefull for 
obtained  exctly  informations  about  the  spectral 
composition  of  the  y(t)  and  ϕ(t)  signals.  This 
informations  help  designers  to  avoid  the  dangerous 
phenomenon of resonance, that could be appear not 
only for the eigen value of system frequency, and for 
the  high  values  of  external  loads  frequencies  that 
concur with the superior harmonics of the system.
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