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ABSTRACT

A dynamic system that models the fixing of a fan is studied, by means of the 
non-linear vibration theory as well as of the dynamic system theory. Three 
different  operation  conditions  are  investigated:  autonomous  system,  
non- autonomous  system  subject  to  a  harmonic  excitation  and 
non- autonomous  system subject  the  simultaneous  action  of  two  harmonic  
excitations.

1.PRESENTATION OF THE MODEL
The  paper  studies  a  dynamic  system  , 

consisting  of  a  mass  M,  supported  in  a 
horizontal plane by three cables, connected to a 
circular frame (Fig. 1). The cables, of lengths l, 
Young’s  moduli  E,  cross-sectional  areas  A and 
negligible  masses  (with  respect  to  M),  are  not 
tensed  by  any  external  forces.  The  system  can 
model the fixing of a fan.
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Fig. 1. The studied model

By  using  some  methods  of  the  non-linear 
vibration  theory,  as  well  as  of  the  dynamic 
system  theory,  this  single-degree-of-freedom 
system  is  studied  in  three  different  operation 
conditions:
− as  an  autonomous  one,  if  the  frame  is 

considered fixed;
− as  a  non-autonomous  one,  if  the  frame  is 

subject to vertical vibrations, determined by 
the  acceleration  a t(t)  produced  by  a 
harmonic excitation;

− as  a  non-autonomous  one,  if  the  frame  is 
subject to vertical vibrations, determined by 
the  acceleration  a t(t)  produced  by  the 
simultaneous  action  of  two  harmonic 
excitations.
By determining and analysing the equation 

of  motion,  the  behavior  of  the  system  is 
investigated  for  certain  operation  conditions, 
which  makes  it  possible  to  take  technical 
measures in order to avoid risk domains.

2.THE EQUATION OF MOTION
The  equation  of  motion  can  be  determined 

by  using  Lagrange  equations  of  the  second 
species.
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Fig. 2. Vertical projection of the studied model

For the autonomous system (Fig.  2), which 
is conservative, the Lagrange equation takes the 
form
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where the kinetic energy has been introduced,
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as well as the force function,
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In the  previous formula,  l0 is  the  length of 
the untensed cable.

By  replacing  (0) and  (0) in  (0),  the 
differential  equation  of  motion  of  the 
autonomous system is obtained:
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If  the  non-autonomous  system  is 
considered,  the  differential  equation  of  motion 
becomes:
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For  small  elongations  (small  values  of 
parameter y), the approximation
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can  be  made,  which  allows  equation  (0) to  be 
rewritten as
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where  the  following  notations  have  been 
introduced:
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It can be seen from (0) that  the system has 
the non-linear characteristic (Fig. 3)

( ) 32 yyyf µ+ω= , (0)
which is a strong one, since
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Fig. 3. Strong non-linear characteristic

3.ANALYSIS OF THE SYSTEM
In  the  following,  the  cases  of  the 

autonomous  and  non-autonomous  system, 
respectively, are analysed.

3.1.The autonomous system
In  this  case,  the  differential  equation  of 

motion (0) becomes
0yyy 32 =µ+ω+ (0)

and  its  periodical  solution  (with  the  circular 
frequency  Ω)  will  be  found  by  using  Linstadt 
method .

The  method  can  be  applied  if  parameter  µ 
is small and it consists in rewriting the equation 
as
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where
tΩ=τ , (0)

and in  expanding the  solution and  Ω2 as  power 
series of µ:

( ) ( ) ( ) ( ) ...yyyy 2
2

10 +τµ+τµ+τ=τ (0)

...aaa 2
2

10
2 +µ+µ+=Ω (0)

By  replacing  (0) and  (0) in  (0) and  by 
equating  with  zero  the  coefficients  of  the 
powers  of  µ,  a  system  of  second  order  linear 
differential  equations  with  the  unknowns  y0(τ), 
y1(τ), y2(τ),… is obtained:
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For  µ=0,  the  case  of  linear  vibrations  is 
obtained, so that

2
0a ω= , (0)

while  the  solution  which  satisfies  the  initial 
conditions
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( ) τ=τ cosay0 . (0)

By  replacing  this  result,  the  second 
equation  of  the  system  (0) becomes 
successively
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By  equating  with  zero  the  coefficient  of 
cos τ, it follows
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The  solution  for  which  initial  conditions 
(0) remain unchanged is
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hence the first order approximations for  (0) and 
(0) are
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By  similar  procedures,  from  the  third 
equation  of  the  system  (0),  rewritten 
successively as
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the following results are obtained:
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The  second  order  approximations  for  (0) 
and (0) are
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Equation  (0) is  equivalent  with  the  first 
order differential system
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By  adding  the  equations  of  this  system, 
multiplied  with  ω2y and  v,  respectively,  the 
following equality is obtained  

0yyyyvv 32 =µ+ω+  . (0)
This relation can be integrated:
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The last  equation  describes  the  trajectories 
followed  by  the  system  in  the  phase  plane, 
represented in Figure  4, for  ω=1,  µ=1 and  C=1, 
2, 3, 4.
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Fig. 4. Phase plane

3.2.The non-autonomous system under 
the action of one harmonic excitation

If  the  system  is  subject  to  a  harmonic 
excitation, the equation of motion (0) becomes

tcosqyyy 0
32 Ω=µ+ω+ . (0)

An  approximate  periodical  solution  with 
the same frequency as  the perturbation force  is 
seeked.

Considering  a  trigonometrical  series 
expansion containing only the odd multiples  of 
Ωt , the approximate solution will be:

( ) t3cosAtcosAy 31 Ω+Ω≅τ . (0)
By  replacing  (0) in  (0),  by  neglecting  the 

terms  containing  3
2
1 AA ,  2

31AA ,  3
3A  and  by 
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equating  with  zero  the  coefficients  of  the 
trigonometrical  functions,  the following system 
is obtained:
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Assuming that the order of µ and q0 is 0(ε), 
where  ε is a small parameter and admitting that 

( )ε=Ω−ω 022 , it results from (0):
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It  follows  from  (0) the  approximate 
solution
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For  q0=const,  the  graph  of  the  function 
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3.3.The non-autonomous system under 
the simultaneous action of 
two harmonic excitations

If  the  system  is  simultaneously  acted  by 
two  harmonic  excitations  with  not  equal 
frequencies, the equation of motion (0) becomes

tcosqtcosqyyy 2211
32 Ω+Ω=µ+ω+ . (0)

Since  for  µ=0 the  superposition  of  the 
effects  takes  place,  an  approximate  solution  is 
seeked of the form

( ) ( )tutcosAtcosAy 2211 µ+Ω+Ω≅τ , (0)
where  µu(t)  is  a  correction  term  due  to  the 
elastic non-linearity.

By  replacing  (0) in  (0) and  by  equating 
with zero the coefficients of the trigonometrical 
functions,  a  system  with  the  unknowns  A1,  A2 

and  u(t)  is  obtained.  If  the  powers  of  µ are 
neglected, this system is
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The last equality is fulfilled for
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From the  analysis  of  the  results,  it  can  be 
seen  that  the  two  excitation  forces  generate 
forced  vibrations  with  the  same  frequencies  as 
theirs,  but  also  supplementary  vibrations,  with 
the  frequencies  3Ω1   2Ω1+Ω2  ,  2Ω1−Ω2  ,  Ω1+2Ω2, 
Ω1−2Ω2, 3Ω2.

4.CONCLUSIONS
By  determining  and  analysing  the 

differential  equation of motion, the behavior of 
the  dynamical  system  has  been  studied  under 
different assumptions: autonomous system, non-
autonomous  system  under  the  action  of  one 
harmonic  excitation  and  non-autonomous 
system  under  the  simultaneous  action  of 
two harmonic  excitations  with  not  equal 
frequencies.

Approximate  periodical  solutions  obtained 
in  each  situation  provide  a  theoretical  tool  for 
measures  of  avoiding  risk  domains  in  certain 
technical applications.
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