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ABSTRACT

The paper presents the SCICOS program and the way how to formalise dy
namic system with known physical and mathematical models in this envir
onment.  Using  simple  examples  from  the  field  of  vibrations,  it  is  shown 
how  “continuous  space/discrete  time” models  can  be  constructed  in  this  
formalism. For instance,  it  is  presented an example of  a mass-spring sys
tem,  working  dumped  in  different  ways  or  excited. In the end of the paper 
conclusions regarding the SCICOS program are formulated.  

1. Introduction
SciLab  is  a  scientific  numerical,  pro

gramming  and  graphics  environment  software 
package  for  numerical  computations, user-
friendly, providing  a  powerful  open  computing 
environment  for  engineering  and  scientific  ap
plications,  based  on  vector/matrix  manipula
tions.  It  resembles  MatLab/Simulink  and  Mat
rix/SystemBuild family of products. It is similar 
in  operation  to  MatLab,  being  its  best  clone, 
and  other  existing  numerical/graphic  environ
ments, that can be run on a variety of operating 
systems including UNIX, Windows, Linux, etc. 

Developed  since  1990  by  researchers 
from  the  French  Government’s  “Institut  Na
tionale  de  Recherche  en  Informatique  et  en 
Automatique”  -  INRIA (National  Institute  for 
Informatics  and  Automation  Research)  SciLab, 
is  now  maintained  and  developed  by  Scilab 
Consortium since its creation in May 2003. Dis
tributed freely and open source via the Internet 
since  1994,  SciLab  is  currently  being  used  in 
educational  and industrial  environments  around 
the world. Scilab is made of three distinct parts: 
an  interpreter,  libraries  of  functions  (SciLab 
procedures)  and  libraries  of  Fortran  and  C 
routines.  It  includes  hundreds  of  mathematical 
functions  with  the  possibility  to  add  interact
ively programs from various languages (C, C++ 
…) with sophisticated data structures (including 
lists,  polynomials,  rational  functions,  linear 

systems…), an interpreter and a high level  pro
gramming language.

A key feature of  the  SciLab syntax is  its 
ability to handle matrices: basic matrix manipu
lations  such  as  concatenation,  extraction  or 
transpose are immediately performed as well  as 
basic  operations such as addition or multiplica
tion.  SciLab  also  aims  at  handling  more  com
plex  objects  than  numerical  matrices.  For  in
stance,  control  people  may  want  to  manipulate 
rational or polynomial transfer matrices. This is 
done in SciLab by manipulating lists  and typed 
lists which allow a natural symbolic representa
tion  of  complicated  mathematical  objects  such 
as transfer functions, linear systems or graphs.

SCICOS  is  a  graphically-based  system 
modelling  software  for  dynamical  system,  an 
environment  for  designing  reactive  systems 
modeller  and simulator  toolbox included in  the 
SciLab  engineering  and  scientific  computation 
software. Based on an open formalism, SCICOS 
can create block diagrams and be used to model 
and simulate the dynamics of hybrid dynamical 
systems  and  compile  models  into  executable 
code.  SCICOS  is  used  for  signal  processing, 
systems control, to study physical and biologic
al systems. 

New extensions allow hard real-time con
trol  executables,  as  well  as  component  based 
modelling of electrical and hydraulic circuits.

Real  systems can be transposed in  theor
etical  models  following  four  steps,  like  it  is 
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presented in figure 1.  The system is simplified, 
it  results  the  physical  (discrete,  continuous  or 
pseudo-continuous)  model.  For  it  mathematical 
equation(s)  can  be  written,  which  gives  the 
mathematical model. 

Fig. 1. Theoretical models – necessary steps

It is solved by the calculation model, and 
the  results  are  visualized  by  simulation.  SCI
COS is used for the both last steps of theoretic
al modelling. 

 
2. Physical and mathematical model of 

the dynamic considered system
Let’s take for example a real technical system 

which has the physical model consisting in a block 
with mass  m moving upon a surface bond on a fix 
point trough a spring with the spring constant  k. We 
take in consideration two situations: the mass moves 
on a rough surface (figure 2) where the friction coef
ficient is  µ and a viscous surface (figure 3) with the 
damp coefficient  c. Both non-linear and linear situa
tions are represented as well. 

                                                      

Fig. 2. Physical model of a dumped mass-spring sys
tem, with Coulomb friction 

                                                       

Fig. 3. Physical model of a viscous dumped mass-
spring system

If we move the mass  m on the surface whit a 
distance  A  from the equilibrium point in direction y 
and let it free, the mass will begin to oscillate around 
this point. For the friction respecting Coulomb’s law, 
the resistant force is:

)ysign(gmFr ′⋅⋅µ=                    (1)

where g is gravitation and y´ is the velocity.
If the system is dumped in viscous way, the 

resistant force is:

ycFr ′⋅=                                 (2)

The spring acts with a force depending on the 
distance to the equilibrium point, as follows:

  
ykFe ⋅=                                 (3)

The mass in motion will give following force:

ymFm ′′⋅=                             (4)

where y´´ is the acceleration of the mass m.
Writing the equilibrium equation for the forces 

acting on mass m, we find out: 

prem FFFF +−−=                    (5)

where Fp is an eventual external additional force. 
The particular equations are in this case:

pF)ysign(gmykym +′⋅⋅µ−⋅−=′′⋅    (6)

for the non-linear system, with Coulomb friction, and 

pFycykym +′⋅−⋅−=′′⋅                 (7)

for the linear, viscous dumped system.
In the paper we present the behaviour of this 

system in three different conditions:
-Coulomb friction in free movement;
-Coulomb friction with external additional force;
-Viscous friction in free movement.

For  the  numerical  example  following  values 
are set out: 
mass m = 1 kg
spring constant k = 2 N/m
friction coefficient µ =  0,0254
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dump coefficient c =  0,25 kg/s
gravity g = 9.82 m/s2

amplitude A = 1 m
The  system  can  be  driven  by  an  additional 

force  Fp =  F0·sin(2πft)  which act in  y direction and 
has F0 = 1.5 N and frequency f = 3 Hz

The values have no physical signification, they 
are chosen for simplicity. 

3. SCICOS formalism
SCICOS  construct  simply  models  of  dy

namical  systems,  using  a  graphical  editor  in 
which  blocks  (representing  predefined  basic 
functions  or  user  defined  functions)  are  inter
connected,  but  an  underlying  language  exists 
providing a well  defined formalism. This form
alism  is  very  simple  because  it  deals  exclus
ively  with  the  reactive  part  of  the  design;  it 
does  not  provide  a  complete  programming  lan
guage.  The  blocks  are  considered  as  atoms  in 
SCICOS.  In  SCICOS  formalism,  the  execution 
of  simulation  functions  are  considered  instant
aneous  so  SCICOS  can  be  considered  a  Syn
chronous  language  or  more  specifically  an  ex
tension of it to handle continuous time systems. 

SCICOS  provides  many  elementary 
blocks  organized  in  different  palettes  that  can 
be  accessed using the operation  Palettes in  the 
Edit  menu.  This  operation  opens  up  a  dialog 
box  that  includes  the  list  of  available  palettes. 
By selecting a palette in the list, a new SCICOS 
window  opens  up  displaying  the  blocks  avail
able in this palette. Blocks from palettes can be 
copied into the main SCICOS window by click
ing first on the desired block and then at the lo
cation  where  the  block  is  to  be  copied  in  the 
SCICOS  window.  Block  parameters  are  ready 
defined,  but  for  most  blocks they can be modi
fied  by  opening  the  block  dialogs  by  clicking 
the right mouse button

A  SCICOS  block  can  have  two  types  of 
inputs and outputs: 
-regular inputs - usually placed on the sides;
-regular outputs - also on the sides; 
-activation inputs - usually on top; 
-activation outputs - usually at the bottom. 

Regular inputs and outputs are used to com
municate  data  from block  to  block  through regular 
links. Activation inputs and outputs are connected by 
activation  links  which  transmit  control  information 
(activation). It is also possible to make a link origi
nate from another link (to split  a link).  The signals 
have associated a set of time indices, called activation 
times, on which the signal can evolve. Outside their 
activation times,  SCICOS signals  remain constant.  

The  activation time can  be  continuous  (time 
intervals), discrete (isolated points called events) or a 
union  of  time  intervals  and  isolated  points.  

Continuous time operations and discrete-time 

event dependent operations can interact  in  different 
ways. Continuous and discrete time signals can be in
puts to the same block. In fact fundamentally, there is 
no  difference  between a  discrete  time signal  and a 
continuous time signal.  A SCICOS signal  can have 
discrete property over a period of time and later con
tinuous property. This means that in SCICOS we can 
perform operations (such as addition of) continuous 
and discrete time signals. Continuous time signals can 
generate events through zero-crossing blocks. 

4. Example of solving the mathematical 
model for the Coulomb friction case

If a force elongates the spring with one dis
tance unit and than it stops its action, the system will 
start oscillating. The initial conditions will be: elong
ation y = 1 and velocity y’ = 0.

Equation (6) will be disposed in an accessible 
form, about isolating the derivation highest degree: 

)ysign(gy
m
ky ′⋅µ−⋅−=′′                (8)

To  implement  this  equation  we  need  to 
utilize from the SCICOS library (figure 4) two 
integrators, one to obtain the velocity, the oth
er for the elongation. The first will have as ini
tial  condition  the  value  zero  (initial  velocity); 
the  second  will  have  as  initial  condition  the 
value  1  (initial  elongation).  We  need  also  a 
sum  block  with  two  inverting  inputs  and  two 
amplifiers with factors µ·g, respectively k/m. A 
Sign  block  is  also  used.  The  Sign  block  indi
cates the sign of the input: 
-the  output  is  1  when  the  input  is  greater  than 
zero;
-the output is 0 when the input is equal to zero; 
-the output is -1 when the input is less than ze
ro.  
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Fig. 4. Scheme block of a dumped (Coulomb fric
tion) mass-spring system

The simulation results are presented on a 
Multi display scope (our MScpe displays accel
eration,  velocity  and  displacement  diagrams 
separately  or  cumulated)  and  a  XY scope  (dis
play phase plain).  

The Activation clock block can be find in 
Pallets  -  Super  Block  and  is  constructed  by 
feeding back the output of an event delay block 
into  its  input  event  port.  The  unique  output  of 
this block generates a regular train of events.

If  we  particularise  for  the  chosen  para
meters  we  can  analyse  the  case  of  free  move
ment  (figure 5 and figure  6).  The first  diagram 
in  figure  5  presents  the  evolution  of  sign  y’  
(sense  of  resistance),  the  second  diagram  the 
evolution  of  the  acceleration  y”,  the  third  dia
gram  the  evolution  of  the  velocity  y’ and  the 
fourth  diagram  the  evolution  of  displacement 
the y.  

Fig. 5. Simulation of behaviour of a dumped
 (Coulomb friction) mass-spring system

Let us note ys= +µ·m·g/k the distance be
tween the equilibrium point where the spring is 
not  tensioned  and  the  static  equilibrium  point 
given by the friction. It  can be recognized from 
the graphs above that the phase portrait for this 
system is a family of semicircles with centers at 
+ ys and  -  ys.  When  y´< 0  the  center  is  at  + ys 

else the center is at - ys. 
 

Fig. 6. Phase plain for the dumped
 (Coulomb friction) mass-spring system
The  phase  plane  shows  also  the  initial 

values,  y = 1 and y' = 0, i.e. the block is moved 
to the right and released from rest. The velocity 
is  zero  but  the  acceleration  is  negative  so  the 
block starts moving to the left.

If  the  system  is  driven  by  a  force  de
scribed on the end of chapter 2,  the mathemati
cal model of the system will be: 
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)ft2sin(
m
F)ysign(gy

m
ky 0 π⋅+′⋅µ−⋅−=′′   (9)

In  this  case  we  have  to  add  to  the  block 
scheme a block (Sinusoid generator in figure 7), 
available in the SCICOS library, which gives as 
output signal a sinusoid. 

Fig. 7. Simulation of behaviour of a dumped
 (Coulomb friction) mass-spring system driven 

by a sinusoidal acting force

The Sinusoid generator  can be connected 
to the clock or it can work by inheritance.

Fig. 8. Simulation of behaviour of a dumped
 (Coulomb friction) mass-spring system

driven by a sinusoidal acting force
The  parameters  of  the  signal,  first  dia

gram in figure 8, can be defined from the Block 
menu of the Sinusoidal generator.

If  we choose  to  use a  constant  force  and 
not  a  time  depending  one,  we  can  set  the  fre
quency zero in the Sinusoid generator block, or 

we  can  use  another  block  which  gives  a  con
stant signal.     

Seeing the diagrams in figure 8 and com
paring  it  with  the  diagrams in  figure  5  we  can 
conclude  that,  if  the  force  started  to  act  in  the 
same  direction  like  the  elastic  force,  the  amp
litude of the displacement initially grows and it 
is necessary a longer time to stabilise the move
ment. 

Fig. 9. Phase plain for the dumped
 (Coulomb friction) mass-spring system 

driven by a sinusoidal acting force

The  phenomena  can  by  amplified  if  the 
frequency  of  the  force  is  equal  or  close  to  the 
proper frequency of the system.    

From the  phase  plain  in  figure  9  we  see 
that  the equilibrium point moves with  ys like in 
the previous case but because the action o force 
Fp as well.

5. Example of solving the mathematical 
model for the viscous dump case
If a force elongates the spring, like in the 

case  presented  in  chapter  4,  with  one  distance 
unit and than it stops its action, the system will 
start  oscillating.  The  initial  conditions  will  be: 
elongation y = 1 and velocity y’ = 0.

To solve the problem we have to  dispose 
equation (7) in an accessible form, about isolat
ing the derivation highest degree: 

y
m
cy

m
ky ′−⋅−=′′                      (10)

In  this  case,  to  implement  the  equation, 
we need from the SCICOS library two integrat
ors  to  integrate  the  acceleration  y” (results  ve
locity  y’) and the  velocity  y’  (results  displace
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ment y). We need also a sum block with two in
verting  inputs  and  two  amplifiers  with  factors 
c/m, respectively k/m. 

The parameters set in the blocks depend on the 
nature of  the al  system. For the integrators  we set: 
first integrator will have as initial condition the value 
zero (initial velocity); the second integrator will have 
as initial condition the value 1 (initial elongation).  

The amplifiers  will  have values 0.25 for  the 
velocity  (value  of  c/m)  respectively  2.5  (value  of 
k/m).  Time is  set  for  0.1,  it  means the  scopes will 
draw points for the diagrams each 0.1 second.   

Fig. 10. Simulation of behaviour of a viscous dumped 
mass-spring system – block system

The  diagrams  in  figure  11  shows  that   the 
equilibrium will  be  found later  than in  case  of  dry 
friction, but the proper frequency is the same.

Fig. 11. Simulation of behaviour of a viscous dumped 
mass-spring system

Fig. 12. Phase plain for the viscous dumped mass-
spring system 
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The phase plain diagram is in a way sim
ilar to the equivalent diagram for Coulomb fric
tion. It starts also by y = 1, y’ = 0 and with neg
ative  acceleration  but,  because  it’s  no  differ
ence  between  the  equilibrium  point  where  the 
spring  is  not  tensioned and  the  static  equilibri
um  point  given  by  the  friction, the  phase  por
trait  maintains  the  centre  constant  in  the  y =  0 
and y’ = 0 position. Another difference is that it 
consists in a spiral and not in a family of  semi
circles.   

Conclusions
Some aspects of SCICOS formalism have 

been presented.  It  is  shown how activation and 
inheritance  are  used  to  obtain  an  environment 
for  modeling  dynamical  systems  in  a  precise 
and  simple  manner.  The  authors  present  also  a 
concrete  analysis  of  different  technical  systems 

using  the  SCICOS  environment  as  calculation 
model  and  simulation,  which  are  the  lest  steps 
by theoretical modeling. 
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