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ABSTRACT

In this work a mathematical model is suggested with a view to the study of dynamic  
behavior of a horizontal milling machine, under the action of the three cutting force  
components, of which  Fy  produces the horizontal vibration of the machine, while Fx 

and Fz  determine a vertical vibration. First case, the machine behaves like an elastic  
system with 3 degrees of freedom, while in the second case, the elastic system of the 
machine  has  4  degrees  of  freedom.  This  analysis  opens  up  with  the  dynamic  
concentration of the distributed mass. The deformed position of the machine might be  
obtained as a result of successive rotations. Starting from the system of fixed axes, it is  
successively obtained the systems of moving axes, solidly bound to various parts of the  
machine. The expressions of the reference axes unit vectors were determined by using  
the quaternion rotation operator. The orthogonal changes of coordinates are operating 
by using positional affine orthogonal tensors. The differential equations of the small  
vibrations of the system are analyzed by means of Lagrange's quadratic equations.

Notations
Fx  , Fy   , Fz -cutting force components [N]; θ,ϕ - 
angles  [rad.];  ω,  , θ ϕ  -angular  speed  [s -1];   m  , 
M  -  masses  [  kg  ];  a,  b,  c,...,  l,  m,  n  -lengths 
[m];  ρ -radius  of  gyration  [m];  JC  x -inertia 
moment  to  Cx axis  [kg.m2];  i j k, ,  -reference 
axis  unit  vectors;  q  -quaternion  rotation 
operator;  *  -quaternion  product;  T(  i  ,  j  ) -affine 
orthogonal  tensor;  x y zn

k
n
k

n
k~ ~ ~

, ,  -  k   sphere  center 
coordinates to xn  yn  zn  system of axes [m]; E - 
kinetic  energy  [N.m]; A,  B -coefficients;  D - 
energy  dissipation  function  [N.m];  Ep - 
potential  energy [N.m]; F(t) -generalized force; 
K -elasticity constant [N.m];  C -damping factor 
[N.s.m-1];  δ L -virtual  elementary  mechanical 
work [N.m]; δ - differential quantity symbol.

1. Introduction
In this work a mathematical model is suggested 
with a view to the study of dynamic behavior of 
a  horizontal  milling machine (fig.  1),  under the 
action  of  the  three  cutting  force  components 
(fig.  2),  of  which  Fy produces  the  horizontal 
vibration of  the machine (fig.  3),  while  Fx  and 

Fz  determine a vertical vibration (fig. 4).
Pictures 3 and 4 are deduced on the basis 

of experimental researches in [13].

First  case  (fig.  3),  the  machine  behaves 
like  an  elastic  system  with  3  degrees  of 
freedom: θ1  , θ2 ,θ 3 ,  while  in  the  second 
case(fig. 4), the elastic system of the machine 
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has 4 degrees of freedom: ϕ 1 , ϕ 2  , ϕ 3 , ϕ 4 .

2. The Study of the Dynamic Behavior of 
the Milling Machine

2.1. The dynamic concentration of the 
distributed mass

This  analysis  opens  up  with  the  dynamic 
concentration  of  the  distributed  mass    in 
spheres  of  finite  dimensions,  as  can  be  see  in 
fig.  5,  in which 1-2 represents the bedplate,  2 - 
3 - 9 the column, 3 - 4 - 8 the console, 5 - 6 - 7 
the machine table, 9 - 10 the over-arm.
Because  the  horizontal  vibration  is 
preponderant, the concentration of the mass will 
be made for the bodies in this movement.
For  the  bedplate  1-2  (fig.  6)  the  equations  for 
the dynamic concentration of the mass are:

m1  + m'
2  = M1 , 2

  m1  d1  - m'
2  d'

2  = 0                          (1) 
m1  ( ρ2

1  + d2
1  ) +  m'

2  (ρ' 2
2  + d' 2

2  ) = JC 1  z

In  the  system (1)  it  is  known:  the  mass  of  the 

bedplate  M1,2 ,  the  position  of  the  center  of 
gravity C1 ,  the axial inertia moment  JC1 z ;  it  is 
chosen the radius  of  gyration  ρ1 and obtain the 
unknown values m1 , m '

2 , ρ '
2  (for a sphere,

the radius of gyration is ρ = R 0 4, ).
For  the  column  2  -  3  -  9  (fig.  7),  the 

equations are:

m"
2  + m'

3  + m'
9    = M2 , 9

 m'
3   d' 

3  + m'
9   d' 

9   - m"
2  d"

2   =0                   (2)
m"

2  (ρ" 2
2  + d" 2

2  ) + m'
3  (ρ' 2

3  + d' 2
3  ) +

+ m'
9  (ρ' 2

9  + d' 2
9  ) = JC 2 x  .
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We choose ρ"  
2 ,  ρ '  

3  ,  ρ '  
9 and it is obtained m"

2 

, m '
3 , m '

9 .
Similar  determinations  are  also  made  for  the 
bodies 3 - 4 - 8, 5 - 6 - 7, 9 - 10. For the sphere 
2 (fig. 5), there are: 

m '
2 = m '

2  + m"
2 ;  ρ2  = ρ '

2  = ρ"
2 .      (3)

An  analogous  calculus  is  made  for  the 
spheres 3 and 9.

2.2. The deformed position of the 
machine

The deformed position of the machine   might be 
obtained as a result of successive rotations with 
the  angles  ϕ1   and  θ1   (fig. 8), ϕ2  and  θ2  (fig. 
9), ϕ3 and  θ 3 (fig. 10), ϕ 4 (fig. 11).

The  rotations  toke  place  at  angular  speeds 
 ϕ θi jand , i = 1,2,3,4 ; j = 1, 2, 3.

Starting from the system of fixed axes  z1    y1  z1 

(fig.  2),  it  is  successively obtained the  systems 
of  moving  axes  x i   yi  z i ,   i  =  2,  3,  4,  solidly 
bound to various parts of the machine. 

2.3. The expression of the reference 
axes unit vectors

The  expression  of  the  reference  axes  unit 
vectors   are determined by using  the quaternion 
rotation operator (see the Appendix A).

In  this  way,  referring  to  figure  8,  it  is 
obtained:

;cosksini

k)sinjcos(k)j,(qs

;sinkcosi

i)sinjcos(i)j,(qi

1111

1111111

1111

11111112

ϕϕ

ϕϕϕ

ϕϕ

ϕϕϕ

+−=

=∗−=∗−=

+=

=∗−=∗−=

;coscosksinj

cossini)cosksini(
)sinicos(s)i,(qk

11111

1111111

121212

θϕθ

θϕϕϕ
θθθ

++

+−=+−∗

∗−=∗−=

j q i j i j

i j k

For figure

k q j k i k

i q j i i k

i q k i i j

k

j q k j

2 1 2 1 1 2 1 1

1 1 1 1 1 1 1 1

3 2 2 2 1 2 2 2

2 2 2 2 1 2 2 2

3 2 3 2 2 2 2 2 2

2 2 2

3 2 3 2

4
9

= − ∗ = − ∗ =

= + −

= − ∗ =− +

= − ∗ = +

= ∗ = + +

+

= ∗

( , ) ( cos sin )

sin sin cos cos sin .
( )

:

( , ) sin cos ;

( , ) cos sin ;

( , ) cos cos sin

sin cos ;

( , ) .

'

'

θ θ θ

ϕ θ θ ϕ θ

ϕ ϕ ϕ

ϕ ϕ ϕ

θ ϕ θ θ

ϕ θ

θ

 

(5)
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We further  similarly  proceed  to  figures  10  and 
11.

 

 

2.4. Positonal affin orthogonal tensors
The  positonal  affin  orthogonal  tensors   which 
operate the orthogonal change of coordinates

(see Appendix B), are:
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0001

T

θϕθϕϕ
θθ
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                                                                                (6)
where  x1,  y1,  z1 are  the  coordinates  of  the  axis 
system origin x2 y2 z2 in relation to the system x1 

y1 z1 .
Similarly: 
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                                                                                (7)
The same for T (2,  4)  and T (3,  5).
The  formulas  for  changing  coordinates 

may be written in a matrix form:

,

0
0

1

.T.T

z
y
x
1

,
0
0
1

.T

z
y
x
1

43)3,2()2,1(

4~
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4~
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32
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1

6~
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        (8)

where  the  "  k  "sphere  center  coordinates  are 
marked k~

i
k~

i
k~

i z,y,x  on the reference system x i  y i 

z i. The k sphere center coordinates which do not 
appear in (8) are determined in a similar way.

If we approximate  sin  ψ ≈ ψ   and   cos 
ψ ≈ 1,  for   ψ =  ϕ or  θ,  in  the  position  tensors 
and  neglect  the  double  and  triplex  angular 
products , we obtain:
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T(2  ,3),  T(2  ,4),  T(3  ,5),  T(1  ,3) = T (1  ,2).T(2  ,3) are 
similarly obtained .

Now we may calculate the sphere centers 
coordinates  in  relation  to  the  fixed  system  of 
axes x1  y1 z1:  x y zk k k

1 1 1
 ~ ~

, , , for k = 3, 4, 5,..., 10, 
as well as the speed of the sphere centers:

      v x y zk
k k k2
1

2
1

2
1

2= + +(  ) (  ) (  )
~ ~ ~

.                (10)
For  example,  it  is  obtained  for  the  6 

sphere center the following:

                

1 1
0
0

1
6

1
6

1
6

1 5

6 6

x
y
z

T
~

~

~

( , )

'

,



















=





















                    (11)

where from:

           

 ( ) 

 ( )  

( )  

~
' '

~
' '

~
' ' '

x

y

z

1
6

23 36 6 6 1

1
6

23 6 6 36 2

1
6

36 6 6 2 6 6 4

= − + +

= + +

= − −

  

  

  

ϕ

θ θ

ϕ ϕ

              (12)

2.5. The calculation of the spheres 
kinetic energies in their movement in 

relation to its very center
For sphere 3, for example, which participates in 
the rotations  ,  ,  , ϕ θ ϕ θ1 1 2 2  (fig. 12), it may be 
written, taking into account (4) and (5):

.k

;)cosksini(i

;sincoskcosj
sinsini(j

;j

322

11111211

11111

1112222

111

θθ

ϕϕθθθ

θϕθ
θϕϕϕϕ

ϕϕ









=

+−−=−=

−+

+−=−=
−=

  (13)

The resultant angular speed of the sphere 3 is:  

          ,21213 θθϕϕω  +++=             (14)

with projections on the axes of fixed system:
ω ϕ ϕ θ θ ϕ

θ ϕ ϕ θ ϕ ϕ

ω ϕ ϕ θ θ θ ϕ

ω ϕ ϕ θ θ ϕ

θ ϕ ϕ θ ϕ ϕ

3 2 1 1 1 1

2 1 2 1 1 2

3 1 2 1 2 1 2

3 2 1 1 1 1

2 1 2 1 1 2

x

y

z

= − + −

− +

= − − +

= − −

− +

 sin sin  sin
 ( sin cos cos sin sin );
  cos  sin sin ;

 cos sin  cos
 ( cos cos cos cos sin ) .

 (15)

We also operate in (15) the 
approximation regarding the small angles, made 

in the paragraph 2. 4; moreover we neglect the 
products of type: ψ ψ . The kinetic energy of 

sphere 3 obtained from its movement in relation 
to its center C3 may be written: 

E J

J

C x y z3

1
2

1
2

2 2

3 3
2

3
2

3
2

3 1
2

2
2

1 2 1
2

2
2

1 2

= + + =

= + + + + −

( )

(         )

ω ω ω

ϕ ϕ ϕ ϕ θ θ θ θ
(16)

2.6. The kinetic energy
The kinetic energy of the 10 spheres system:

E E E
m v

i
i

C
i i

i
i

= = +
= =
∑ ∑

1

10 2

1

10

2
( ) ,  (17)

may be written as:                                      

   E A Bi i i j i j
j
i j

ii

= +
=
≠

==
∑∑∑ ψ ψ ψ2

1

7

1

7

1

7

 ,   (18)

considering:  ψ i = ϕ i ,  for i = 1, 2, 3, 4  and ψ 
i  + 4 = θ i , for i = 1, 2, 3.

2.7. The differential equations
The  differential  equations  of  the  small 
vibrations of the system are [6]:

   
d
d t

E D E E
F t

i i i

P

i
i

∂
∂ ψ

∂
∂ ψ

∂
∂ ψ

∂
∂ ψ 

( )








 + − + =  , 

for i = 1 , 2 , . . . , 7  ,                          (19) 

where  E P  represent the potential energy of the 
system,  while  D is  the  energy  dissipation 
function.

For  the  horizontal  vibration  of  the 
machine  (fig.  3),  the  column,  the  console  and 
the  over-arm may be  considered rigid  elements 
which are articulated in this way: the first to the 
bedplate,  while  the other two to the column, as 
in fig. 13, 14 and 15. 
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The  potential  energy  of  the  system  in 
horizontal vibration is:

E K a K b K c K d

K e K f

or E K K K

P
A B C D

E F

P

'

'

,

= + + + +

+
+

= + +

2 2

1
2

2 2

2
2

2 2

3
2

1 1
2

2 2
2

3 3
2

2 2

2
1
2

1
2

1
2

θ θ

θ

θ θ θ

 

(20)
The energy dissipation function: 

D C a C b C c C d

C e C f

or D C C C

A B C D

E F

'

'

 

 ,

  

= + + + +

+
+

= + +

2 2

1
2

2 2

2
2

2 2

3
2

1 1
2

2 2
2

3 3
2

2 2

2
1
2

1
2

1
2

θ θ

θ

θ θ θ

     (21) 

For  the  vertical  vibration  (fig.  4),  the 
shifted position of the column, the console,  the 
over-arm and  the  machine  table  are  drawn in  a 
dotted line in fig.16, 17, 18 and 19.

The  potential  energy  of  the  system  in  this 
vibration is:

                  E KP i i
i

' ' = −
=
∑ 1

2 3
2

4

7

ψ                     (22)

where:   K 4 = K G  . g 2 + K H . h 2  ;  
              K 5 = K I . i 2 + K J .  j 2 , etc.
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The energy dissipation function:

             D Ci i
i

' ' = −
=
∑ 1

2 3
2

4

7

ψ  ,

where  C 4 = C G . g 2 + C H . h 2 ,  etc.                 (23)

For the system in general vibration, the potential 
energy and the energy dissipation function are: 

E E E K

D D D C

P P P i i
i

i i
i

= + =

= + =

=

=

∑

∑

' ' '

' ' '

;



1
2

1
2

2

1

7

2

1

7

ψ

ψ
,        (24)

where is used the angles notations of  (18).
We calculate  the  expressions in  the  equations 

(19):

∂
∂ ψ

ψ ψ ψ

∂
∂ ψ

ψ ∂
∂ ψ

ψ

∂
∂ ψ

∂
∂ψ

ψ

E A B M

d
d t

E M D C

E E K

i
i i i j j

j
j i

i j j
j

i
i j j

j i
i i

i

P

i
i i


   ;


 ;


 ;

;

= + =









 = =

= =

=
≠

=

=

∑ ∑

∑

1

7

1

7

1

7

0

 

(25)

The  generalized  forces  F i(t) from  (19) 
may  be  determined  by  calculating  the  virtual 
elementary mechanical work of the forces Fx(t),  
Fy(t), Fz(t) (fig.20), applied in point 6 (fig.6 and 
20):

δ δ δ δ

δ δ δ

L F r F r F r

F x F y F z

x y z

x y z

= + + =

= − + +

~ ~ ~

~ ~ ~

6 6 6

1
6

1
6

1
6

  ,   (26)

where we shall use the relations (11):

δ δϕ δ ψ

δ δθ δθ

δ ψ δ ψ

δ δ ϕ δϕ

δ ψ δ ψ

x L

y

L L

z

L L

1
6

2 3 3 6 6 6 1 1 1

1
6

2 3 6 6 1 3 6 2

5 5 6 6

1
6

3 6 6 6 2 6 6 4

2 2 4 4

~
' '

~
' '

~
' '

( ) ;

( )

;

( )

;

= − + + = −

= + + =

= +

= − − =

= −

  

  

  

        

                                                                             (27)

so that:
δ L = F x L 1 δ ψ 1  + F y L 5 δ ψ 5  + F y L 6 δ ψ 6 +

          + F z L 2 δ ψ 2 - F z L 4 δ ψ  4   ,                  (28)
where from:   F 1 ( t ) = F x L 1  ;  F 2 ( t ) = F z L 2  ;

   F 3 ( t ) = 0  ;  F 4 ( t ) = -F z L 4   ; F 5 ( t ) = F y L 5  ;  
F 6 ( t ) = F y L 6   ;   F 7 ( t ) = 0 .            (29)

The equations (19) may be written: 

      M C K F ti j j i i i i i
j

  ( )ψ ψ ψ+ + =
=

∑
1

7

 ,  

                   i = 1 , 2 , . . . ,7 .                               (30)

The system of  differential  equations  (30) 
is turned into a system of algebraic equations if 
the  Laplace  Transformation  is  applied  to  it 
(considering  the  initial  conditions  as  null),  and 
the  algebraic  system obtained  in  this  way  may 
be written in a matrix form: 
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KsCsM..sM
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sM..sM
sM..sM
sM..KsCsM

7

3

2

1

7

3

2

1

77
2

77
2

17

2
73

2
13

2
72

2
12

2
7111

2
11

ψ

ψ
ψ
ψ

or in a symbolic notation :
                        W . Ψ  = F                                    (31)

3. Conclusions
This  matrix  equation  describes  the  automatic 
system  of  the  general  vibration  for  the  milling 
machine, having the input vector  F and the output 
vector Ψ . From previous equation we obtain:  

Ψ = W - 1 . F = Y . F 

The  matrix  Y=W -1  is  called  the  transfer 
matrix of the system, used in the analysis of the 
dynamic behaviour of the machine, as well as in 
identification.

We  notice  that  matrix  Y describes  the 
open automatic system of the machine. In order 
to  analyze  the  closed  (real)  automatic  system 
we  must  also  determine  the  transfer  matrix  of 
the cutting process, a problem which the author 
intends to deal with in the future.

With  this  work  we  hope  we  answered  to 
the  request  from{4],  pp.  626,  which  wanted  us 
to  describe  the  chatter  of  the  milling  machine 
like a spatial vibration.

APPENDIX A

From [14] we sum up the following:
If the vector  a (fig.  21)  is  obtained by rotating 
the  vector  b  with  the  angle  θ, along  the 
direction  given  by  vector   v  (according  to  the 
right  handed  screw  rule),  then  there  is  the 
relation:      a v b= + ∗( cos sin )θ θ  
where:

Fig. 21
- the  vectors  b  and  v  are  known  by 

projecting them on a system of axes:

b b i b j b k v v i v j v k= + + = + +1 2 3 1 2 3; ;

- the sign  ∗ symbolises the  quaternion product, 
which is non commutative.
The  quaternion  product  of  the  unit  vectors  is 
obtained according to the rule:

i i j j k k
i j k j i k
j k i k j i
k i j i k j

∗ = ∗ = ∗ = −

∗ = ∗ = −

∗ = ∗ = −

∗ = ∗ = −

1

It  is  marked  the  quaternion  rotation  operator:
q v v( , ) cos sinθ θ θ= +  .
Theorem  :  q v( , )θ  operates  the  rotation  of  a 
vector b  round v , with the angle θ, having as a 
result the vector a , if it is applied on the left of 
the  vector  b ,  in  a  quaternion  product:
a q v b= ∗( , )θ

APPENDIX B

From [8, 9, 12] we sum up the following:
Let be  Iν-1 and  Iν two elements that  belong to a 
linkage,  between  them  being  a  cinematic 
coupling (fig. 22). It is knotted:  

      α ν ν ν ν ν ν
i j i j i ji i i i( , ) cos( ; )− − −= = ⋅1 1 1

Between the  coordinates  of  a  point  M  ∈ Iν and 
the coordinates of the same point belonging to I
ν-1 , we have got (fig. 23):

         xν-1 , j = xν, j + α1 j 
( ν , ν-1 ) xν1 + α2 j 

( ν , ν-1 ) xν2  + 
+ α3 j 

( ν , ν-1 ) xν3  , ( j = 1 , 2 , 3 ) .     (32)

These  relations  establish  a  biunique 
correspondence  between  the  Iν-1 and  Iν domain 
points.
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The system (32) can be replaced by a linear and 
homogeneous equations system, putting:

          xν-1 , j  = Xν-1 , j +1  / Xν-1 , 1   
and   xν-1 , j  = Xν, j +1  / Xν, 1   , ( j = 1 , 2 , 3 );  (33)

with   Xν-1 ,1  = Xν,1 ,  (32) becomes :  Xν -1 ,1  = Xν,1 ,
  Xν-1 ,j+1 = xj 

 ν Xν1 + α1 j 
( ν , ν-1 ) Xν2 + α2 j 

( ν , ν-1 ) Xν3 + 
               + α3 j 

( ν , ν-1 ) Xν4 , (j =1,2,3).         (34)

(34)  define  an  affin  orthogonal  change  of 
coordinates.

Fig. 22

Fig. 23
Being  in  Euclid's  space  in  four 

dimensions,  introduced,  above  an  affin 
orthogonal  tensor  of  order  2,  specified  to  the 
considered  cinematic  coupling,  which  realizes 
the orthogonal change given by (34): 
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ν ν ν ν ν ν ν
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α α α
α α α
α α α
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− − −

− − −
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1

3 13
1
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1

33
1

1 0 0 0

 

                                                         (35)
The  formulas  of  coordinates  change  can 

be transcribed as abbreviate matrix form:
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  ,        (36)

in  which  r and rν ν−1  were  knotted  the  position 
uni-column matrices of one and the same point M in 
the  considered  Cartesian  coordinates  systems.  The 
schema of any mechanism can be considered as being 
formed of a linkage. The elements’ positions analysis 
is  made by associating to each element a  Cartesian 
frame  (fig.  22).  By  applying  the  equations  (36) 
relative  to  the  coordinates  change  of  the  systems 
bounded by successive elements, it is obtained:
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from where , by successive substitutes :
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