AGAIN ABOUT OF THE TAYLORIAN RELATION

Prof.dr.ing. Gheorghe OPROESCU
Conf.dr.mat. Ghiorghe CAUTES
"Dunarea de Jos" University of Galati E-Mail oproescu.gheorghe@ugal.ro

Abstract

ABSRACT The Taylorian relation for the calculation of the values of the cutting speed is valid only on very small domain of the cutting speed. The obtained results give great errors on the large domain of the today used speeds from a few $\mathrm{m} / \mathrm{min}$ to more thousand $\mathrm{m} / \mathrm{min}$. The manufacturing on CNC machine or the manufacturing on automatically production lines changes significant the use of the Taylorian relation and his influence on the factory overhead. The content of this work shows a new image of the very old relation of the metal cutting and new use condition.

1. Introduction

The Taylorian relation express an analytically link between cutting speed $v[\mathrm{~m} / \mathrm{min}]$ and edge endurance T [min] of the cutting tool

$$
\begin{equation*}
v=C_{v} / T^{m} \tag{1}
\end{equation*}
$$

where C_{v} and m are determined from all conditions of the cutting (tool- and tool material, worked piece, lubricant and cooling medium etc.). The edge endurance T is the working time until the maximal accepted wear of the cutting edge.
The value of the wear, $V B$, depends in great measure from the cutting speed and has a

Fig. 1. The points v_{i}, T_{i} with $V B=$ constant
continuous increase in the time. If we fixe a maximal accepted wear value $V B_{a c c}$, Fig. 1, the Points v_{i}, T_{i} give the relation (1). But how much must be the accepted value of the wear $V B$, if this value can be or not can be optimised, these are in the moment only questions. In order to give a correct response, we need a few relations.

The cutting edge can be or can be not resharpened. It deals with resharpening reserve Res, fig. 2 and number of the resarpens $n_{r s}$. For changeable edge is $n_{r s}$ =number of the

Fig. 2. The resharpening reserve
cutting corners. The economical edge endurance become from

$$
\begin{equation*}
T_{e c}=\frac{1-m}{m} \cdot \frac{C_{t}}{S_{w}} \tag{2}
\end{equation*}
$$

where $m=$ the Taylorian exponent, C_{t} the cost of the cutting tool on his endurance T, S_{w} the salary of the worker (or the costs dependent from the working time) in money pro minute.

The cost C_{t} contains the purchase of the tool P_{t} divided trough the number of the resarpens $n_{r s}$ and the cost of the resarpening $C_{r s}$.

$$
\begin{equation*}
C_{t}=P_{t} / n_{r s}+C_{r s} \tag{3}
\end{equation*}
$$

With the optimal durability $T e c$ we calculate the optimal cutting speed v with (1) and $T=T e c$. The cost of the manufacturing C_{m} is [2]

$$
\begin{equation*}
C_{m}=T_{b} \cdot S_{w}+\frac{P_{t}+n_{r s} \cdot C_{r s}}{N} \tag{4}
\end{equation*}
$$

The working time for a piece T_{b} is at turning

$$
\begin{equation*}
T_{b}=\frac{L \cdot \pi \cdot D}{1000 \cdot v \cdot s} \tag{5}
\end{equation*}
$$

and the number of the worked pieces with entire cutting edge N

$$
\begin{equation*}
N=\frac{\operatorname{Res}}{V B} \cdot \frac{T_{e c}}{T_{b}} \tag{6}
\end{equation*}
$$

The cost of the manufacturing become

$$
\begin{equation*}
C_{m}=\frac{L \cdot \pi \cdot D}{1000 \cdot s} \cdot\left(\frac{S_{w}}{v}+\frac{V B \cdot P_{t}}{v \cdot T \cdot \operatorname{Res}}+\frac{C_{r s}}{v \cdot T}\right) \tag{7}
\end{equation*}
$$

In the relations (5)-(7) $s=$ the advance [$\mathrm{mm} / \mathrm{rot}], L=$ the length of the worked area [mm], $D=$ diameter of the piece [mm]. If the edge is not resharpened, become in (7) $C_{r s}=0$ and $\operatorname{Res} / V B=n_{r s}=$ number of the cutting corners.
Farther we consider the wear $V B$ as an unknown parameter and his value is to determine from the condition that the cost of the manufacturing become minimal, $\quad \partial C_{m} / \partial v=0 ; \partial C_{m} / \partial T=0$, respectively

$$
\left\{\begin{array}{l}
S_{w} \cdot T+\frac{P_{t}}{R e s} \cdot V B-\frac{P_{t}}{R e s} \cdot v \cdot \frac{\partial V B}{\partial v}+C_{r s}=0 \tag{8}\\
\frac{P_{t}}{R e s} \cdot V B-\frac{P_{t}}{R e s} \cdot T \cdot \frac{\partial V B}{\partial T}+C_{r s}=0
\end{array}\right.
$$

If $C_{r s}=0$ or $C_{r s} \approx 0$ the last equation from (8) gives the relation:

$$
\begin{equation*}
\frac{\partial V B}{\partial T}=\frac{V B}{T} \tag{9}
\end{equation*}
$$

Fig. 3. Optimal wear at turning of steel $33 \mathrm{MoC} 11-\mathrm{HB}=229 \mathrm{daN} / \mathrm{mm}^{2}$, edge from P10 bedded with TiN

The relation (9) demonstrates that the wear can be not considered as a constant value. The optimal values of the wear become from (9) and are represented in fig. 3.

2. Another relations like Taylorian type

Practically research of the author [4] has given enough data in order to model more relation. The wear can be modelled with the relation

$$
\begin{equation*}
V B=\sum_{i=1}^{n} a_{i} \cdot T^{b_{i}} \cdot v^{c_{i}} \tag{10}
\end{equation*}
$$

If n is greater, the precision of the equation becomes greater. The figure 4 shows the graphics of the relation $V B=4.47 \cdot 10^{-5} \cdot T^{0.2} \cdot v^{1.6}+1.024 \cdot 10^{-19} \cdot T^{4} \cdot v^{6.3}$ [mm] on the domain $T \in[0,10], v \in[80,174]$. The equation (10) can be used mostly in order to demonstrate another relations.
If $V B$ is constant and $n=1$ we have

$$
\begin{equation*}
a_{1} \cdot T^{b_{1}} \cdot v^{c_{1}}=K \Rightarrow v=\frac{\left(K / a_{1}\right)^{1 / c_{1}}}{T^{b_{1} / c_{1}}} \tag{11}
\end{equation*}
$$

respectively the Taylorian relation. For $V B=0.7$ we have $v=418 / T^{0.125}$, a very usual relation but the precision of (10) is very low for $n=1$. If (9) is considered we have

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} \cdot T^{b_{i}-1} \cdot v^{c_{i}}=\sum_{i=1}^{n} a_{i} \cdot b_{i} \cdot T^{b_{i}-1} \cdot v^{c_{i}} \tag{12}
\end{equation*}
$$

Fig 4. The wear $V B$ as function of v and T
The cost given from (7) becomes

$$
\begin{equation*}
C_{m}=\frac{L \cdot \pi \cdot D}{1000 \cdot s} \cdot\binom{\frac{S_{w} \cdot T^{m}}{C_{v}}+\frac{C_{V B} \cdot P_{t} \cdot T^{m-1-w}}{C_{v} \cdot R e z}+}{+\frac{C_{r s} \cdot T^{m-1}}{C_{v}}} \tag{18}
\end{equation*}
$$

The minimal cost is under the condition $\partial C_{m} / \partial T=0$, respectively

$$
\begin{align*}
& m \cdot L_{A} \cdot T+\frac{C_{V B} \cdot P_{t}}{\operatorname{Rez}} \cdot(m-1-w) \cdot T^{-w}+ \tag{19}\\
& +C_{r s} \cdot(m-1)=0
\end{align*}
$$

The solving of the (19) is only on numerically way possible and gives the optimal edge endurance T. For unresharpened edges the relations are easier. The relations from Taylorian type (1) and (17) determined from the points like fig. 3 give, together with the solution of (19), the best possible working conditions at lower costs.

Reference

[1] Constantinescu Ion s.a. Prelucrarea datelor experimentale cu calculatoare numerice. Editura Tehnica, Bucuresti, 1980.
[2] Oproescu Gheorghe. Optimizarea regimului de aschiere. Tipografia Univesritatii din Galati, 1991.
[3] Gh. Oproescu. Modelari in procesul de aschiere a metalelor, Editura ZEDAX, Focsani 1997, ISBN 973-97370-5-6.
[4] Oproescu Gheorghe s.a. - Cercetari privind capacitatea de aschiere a placutelor TNNG 22.04.12 din diferite grupe de utilizare, acoperite cu TIC si respectiv cu TIN. Contract incheiat intre Institutul Politehnic Bucuresti -Intreprinderea de Mecanica Fina Bucuresti, decembrie 1982.
[5] Popescu Iulian. Optimizarea procesului de aschiere. Editura Scrisul Romanesc, Craiova, 1987.

