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ABSTRACT 
 

This paper describes a method of determining the cross section arrows and 
rotations of a straight unsupported bar subjected to bending stress. The 
straight bar is in a state of static balance while subjected to external loads 
and not resting on any external point. The calculation relations obtained 
enable the specialists to determine both the rotation and the displacement 
of all the cross sections of a straight unsupported bar, which occur further 
from the external in-plane bending loading. Please note that these 
displacements are calculated against the initial position of the straight 
bar. When the exterior bending stress starts to be higher than zero, the 
unsupported bar is in a continuous static balance and it bends 
continuously until the exterior load reaches its highest value. According to 
the method described hereunder, the arrow and rotation are calculated for 
this last bar position. The same method is also employed to determine the 
positions of the cross sections that do not undergo any displacement from 
their initial position. Along the whole straight bar, these sections are at 
least two. 
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1. INTRODUCTION 
 When subjected to in-plane bending 
stresses, an originally straight bar bends and its 
geometrical axis becomes a plane curve having 
the shape of an arc of a circle. The calculation 
of the displacements encompassed by the cross 
sections of such a bar is designed to establish 
the deformed shape of the bar’s geometrical 
axis.  
 During in-plane bending loading, the cross 
sections of a straight bar are displaced and 
rotated against their original position before the 
stress [1]. Bernoulli’s hypothesis applies to 
elastic bending loading, according to which a 
plane section perpendicular to the bar axis 
before the stress (deformation) remains plane 
and perpendicular to the bar axis throughout the 
application of the load [2]. The new position of 
the bar cross section is defined by two 
parameters: 

‐ the v(x) arrow, which is the vertical 
displacement of the center of gravity of the 
cross section, fig. 1; 

‐ the φ(x) rotation, which is the angle formed 
by the bar cross section before bending and 
the bar cross section after bending, fig. 1. 

 
Fig. 1. v(x) arrow and φ(x) rotation; bar 

subjected to in-plane bending; b) deformation 
of the bar geometrical axis 

 
It is well known that between the v(x) 

arrow and φ(x) rotation of the cross sections of 
a straight bar subjected to in-plane bending 
there is the following differential ratio [3]: 
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where: 
‐ M(x) is the expression of the bending 

moment for the same x cross section for 
which the v(x) arrow and φ(x) rotation are 
calculated; 

‐ E is Young’s modulus; 
‐ Iz is the axial moment of inertia calculated 

for the same x section, beyond the z axis, 
which is perpendicular to the [x, v(x)] plane 
in fig. 1. 
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results into the φ(x) cross section rotation 
expression, while the second integration of this 
expression leads to the determination of the 
ratio concerning the v(x) cross section arrow. 
The expression for the M(x) moment is similar 
to that for a bar section where no changes in 
either the exterior load variation law or the 
cross section shape variation law occur. In 
order to determine the deformed shape of the 
whole straight bar, we have to find the M(x) 
moment variation law expressions for each bar 
section. If we apply the two integrations to the 
left component of the ratio (1), two integration 
constants will result for each bar section. If the 
bar has n sections, we will get 2n integration 
constants. The latter will be determined using 
(2n-2) continuity requirements applied when 
changing sections and two bar support 
requirements. Please note that, without the two 
support requirements, and using only the double 
integration of the left ratio component (1) for 
each bar section, we will not be able to 
determine the arrow and rotation expressions of 
the cross section of a straight bar subjected to 
in-plane bending stress.  

2. STRAIGHT UNSUPPORTED BAR 
DEFORMATION 

 When a straight bar is deformation-free and 
unsupported, the in-plane bending stress should 
be able to provide the self-balance at any point 
in time when its value increases from zero to 
the highest value [4]. Throughout this increase, 
the bar bends but it also preserves its static 
balance under the exterior load applied to it. In 
practice, there are cases when a straight bar 
subjected to in-plane bending is not actually 
supported and still preserves its balance due to 
the balance of the exterior load. However, the 
problem in this case is that the two support 
requirements can no longer apply to determine 
the expressions of the cross section arrows and 
rotations. This means that the system of n 

equations with n unknown integration constants 
is no longer possible. 
 Further more in the examination of a bar 
section which is dx long, we may conclude that 
the following differential relations may be 
established between the q(x) exterior load, the 
stress as shear force applied to the x bar section 
and the stress as bending moment applied to the 
same bar section [3]: 
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 Note that there is obviously a similarity 
between these differential relations and the 
relations (1). Consequently, if for a straight bar 
subjected to in-plane bending we draw a M(x) 
moment diagram on the whole bar length, the 
area of that diagram may become a new q*(x) 
load applied to that bar. If we consider the 
analogy above between the relations (1) and 
(2), the x cross section arrow and rotation 
expressions are: 
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where: 

‐ T*(x) and M*(x) are the x section stress as 
shear force and stress as bending moment, 
respectively, determined considering 
q*(x)=M(x) as being an imaginary load 
applied to the straight bar; 

‐ C1 and C2 are the integration constants that 
should be determined according to the 
connection and continuity requirements. 

 The validity requirement for ratio (3) is 
that the real beam in fig. 2a turns into an 
imaginary beam, fig. 2b. Thus, the free ends of 
the real beam for which φ≠0 and v≠0 become 
embedded ends when the beam is imaginary, 
which means that T*≠0 and M*≠0. Therefore, 
the support requirements are automatically 
fulfilled, meaning that C1=C2=0, and a 
connection may be established between the 
rotation of the real bar φ(x) section and the 
effort as imaginary bar T*(x) shear force, as 
well as between the real bar v(x) section arrow 
and the effort as imaginary bar M*(x) bending 
moment. It is common knowledge that, if we 
are able to determine the arrow and rotation of 
each unsupported bar section subjected to 
bending, we will also be able to determine the 
arrow and rotation expressions at any other 
point on the bar. We will reveal the relations 
allowing this calculation further on.  
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Fig. 2. Rotation and arrow determination work stages applied to the first end of the unsupported bar 
 
Considering the data above, the φ1 arrow and v1 
rotation at the first end of the real unsupported 
bar, fig. 2a, may be determined using the 
relations: 

=

=

z

1
1

z

1
1

EI

M
v

EI

T


   (4) 

 
 In the equation system provided by ratio 
(4), T1 and M1 are the reactions (shear force and 
bending moment, respectively) in the 
embedding at the first end of the imaginary bar, 
fig. 2b, where the load, q*(x) = M(x), is the 
moment diagram area calculated for the real 
unsupported beam, fig. 2a. Consequently, if we 
find a method to determine the T1, M1, T2 and 
M2 reactions in the imaginary bar with both 
embedded ends, fig. 2b, we will be able to 
determine the unsupported real bar arrow and 
rotation, fig. 2a.  

We should bear in mind, however, that the 
lower part of the axis x should be considered 
the positive part of the imaginary q*(x) load, in 
order to achieve a match between the signs of 
the displacements and those of the reactions (φ1 

– T1 and v1 – M1), as shown in fig. 2b. 

3. DETERMINATION OF 
ARROW AND ROTATION 

CALCULATION RELATIONS 
AT THE FIRST END OF THE 

UNSUPPORTED BAR 
 The straight bar subjected to bending in 
fig. 2b is a double statically undetermined bar 
[5]. This bar may turn into a ”statically 
determined” one if we remove the support on 
which the first end rests and we keep the T1 and 
M1 reactions as a shear force and a bending 
moment acting on the free end of the bar, fig. 
2c. The bar in fig. 2c may be the equivalent of 
the bar in fig. 2b provided that the  rotation 

and  arrow at the first end of the bar are zero. 

The  rotation and  arrow expressions 
occurring at the first end of the bar are similar 
to those in equation (4) that is: 



FASCICLE XIV THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI 

 48

=

=

z

*
1*

1

z

*
1*

1

EI

M
v

EI

T


   (5) 

where T1
* and M1

* are the stress as shear force 
and stress as bending moment, respectively, at 
the first end of the imaginary bar in fig. 2b, 
determined considering q*(x)=M(x) as being an 
imaginary load applied to the same bar. 
 Fig. 2d shows the separate moment 
diagrams resulted the loading of the bar in fig. 
2c with the imaginary q*(x)=M(x) load, with the 
T1 shear force and with the moment M1 bending 
moment. The area of this diagram may be 
considered as an imaginary load acting on the 
bar in fig. 2d, whose first end is attached, in 
order to continue meeting the  and 

 requirements. Thus, the T1
* and M1

* 
reactions will result from the static balance 
equations of the bar in fig. 2d: 
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where: 
‐ L is the full length of the bar; 
‐ Ai

* is the M*(x) moment diagram area, 
considered to be the sign resulting from 
calculations, for each bar section; 

‐ x*
Gi-1 is the distance from the center of 

gravity of each Ai
* area in point 1. 

 
The last two values may be calculated 

according to the relations: 
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where: 
‐ M*(xi) is the bending moment expression 

for each i bar area, provided by the 
imaginary load q*(x)=M(x); 

‐ li is the length of each i bar area where the 
M*(xi) moment expression is valid. 

 Therefore, if we use ratio (5), the first bar 
end section arrow and rotation in fig. 2c are: 
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 As already said, in order to preserve the 
similarities between the bar in fig. 2c and that 
in fig. 2b, the   rotation and  arrow at the 
first end of the bar should be zero. Thus, if we 
solve the equation system in ratio (7) and if we 
use the relations (4), we get the following φ1 

rotation and v1 arrow calculation relations, 
which are actually the calculation of the 
displacement of the first free end of the real 
bar in fig. 2a: 
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 Once we determined the rotation and arrow 
at the first free bar end, using the expressions 
provided by ratio (9), we may also determine, 
relying on the continuity requirements, the 
rotations and arrows of any real unsupported 
bar section. The calculation relations that may 
be employed to determine them are: 
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where: 
‐  φ1 and v1 are the rotation and arrow, 

respectively, at the first unsupported bar 
end, and they are determined using the 
relations (9); 

‐ xi is the distance from the examined section 
at the first bar end; 

‐ 
ix1A  is the M(x)=q*(x) moment diagram 

area, considered with its respective sign and 
from the first end to the xi section; 

‐ 
ix1S  is the static moment of the 

ix1A   area 

(considered with the sign) calculated in 
relation to the vertical axis crossing the xi 

section. 
 Using the relations (9) and the relations 
(10), we may therefore be able to draw the 
variation diagram along the unsupported bar, 
for the rotations and arrows of the cross 
sections of that bar subjected to in-plane 
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bending. 
Fig. 3 shows a practical example and the 

work stages required to draw those rotation and 

arrow variations.  
 

 
Fig. 3. Rotation and arrow variation diagram of an unsupported bar subjected to in-plane 

bending 
 

 According to fig. 3a, the straight bar 
subjected to in-plane bending is unsupported 
and it is in a state of static balance due solely to 
the exterior load acting on it: 
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 Fig. 3b shows the q*(x)=M(x) imaginary 
load applied to a bar whose left end is attached, 
which is similar to the bar in fig. 2c. According 
to ratio (9), note that it is not necessary to also 
represent the T1 and M1 reactions; this may only 
be determined using the moment diagram area 
provided by the imaginary load. Following the 
steps described above, we may draw the M*(x) 
moment diagram, fig. 3c, for the bar whose left 
end is attached, just like in fig. 2d. Using the 
A1 and A2 areas in this diagram, as well as the 

relations (9), we may calculate the φ1 rotation 
and v1 arrow for the left bar end: 
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 Once these values are determined and using 
the relations (10), we may draw the φ(x) 
rotation and v(x) arrow variation diagrams 
along the whole straight unsupported bar, which 
is in a state of static balance due solely to the 
exterior load acting on it as in-plane bending, 
fig.s 3d and 3e. Figure 3d shows that there are 
two bar sections that will not undergoany 
displacement throughout stress increase from 
zero to the highest value. Thus, next to these 
sections, the arrow is zero and the rotation is at 
its peak.  
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 It is very important to specify that the 
straight unsupported bars, which are in a state 
of permanent static balance throughout in-plane 
bending stress increase from zero to the highest 
value, have at least two sections that will not 
undrego any displacement against their original 
position. In another paper, we showed that for 
straight unsupported bars subjected to axial 
loading there is at least one section that 
undergoes displacement (rotation) against its 
original position. 

4. CONCLUSIONS 
 There are not many actual cases of 
unsupported bars in static balance subjected to 
the action of different bending stresses. When 
the bar starts to be subjected to a bending 
stress, the exterior loads increase from zero to 
the highest value and they are in a permanent 
static balance. It is obvious that the balance of 
the deformed neutral fiber should be achieved 
when the load reaches its peak [5]. 
 Using the relations (9) and the relations 
(7), one may determine the 1 rotation and v1 
arrow at the first free end of the straight 
unsupported bar subjected to in-plane bending. 
The following work stages should be covered in 
order to achieve that: 
- draw the q*(x)=M(x) bending moment 

diagram due to the exterior loads applied 
to the unsupported bar; 

- consider q*(x) as imaginary load for a new 
bar whose second end is embedded, while 
the load acts from the bar; 

- draw the Mi
*(x) moment diagram for this 

bar; 
- use the relations (7) and (9) to determine 

the 1 rotation and v1 arrow at the first free 
end of the straight unsupported bar, where 
you should consider the resulted sign of 
those bending moments; 

- use the relations (10) to draw the rotation 
and arrow variation diagram on the whole 
L length of the bar, where you should also 
consider the resulted sign for the Mi(x) 
diagram. 
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