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ABSTRACT

This paper proposes an approach of a six degree dynamic model of a rigid-
solid with some types of symmetries. These symmetries lead to simplified
mathematical models, which are more easily to solve. If the rigid-solid is
symmetrical beared by triorthogonal elastic links, the mathematical model
becomes still simple and the vibrations are decoupled into four subsystems
of movements: side slipping and rolling, forward motion and pitching,
lifting motion, gyration. There are two case studies of modal analysis: for
a viaduct with five arches made from reinforced concrete ,,U” beam and
for an arch (between two piers of the viaduct) made from four reinforced

concrete ,,U” beams.
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1. INTRODUCTION

The mathematical modeling wuses the
physical model of the rigid solid with six
degrees of freedom (6DOF) with a finite
number of viscous-elastic bearings [2], [3], [6],
[11]. Dimensional and inertial characteristics of
the rigid solid and rheological characteristics of
the bearings (stiffness and damping) can be
experimentally determined by direct
measurements and by static and/or dynamic
testing. According to [1], [4], [5], [7] and [8],
the differential equations of the movements of
the rigid solid with viscous-elastic bearings are
coupled by stiffness and damping coefficients.
The system of the equations can be written as
follows:

A4§+Bq+Cq=/, (1
A is the inertia matrix;
B
(damping coefficients);

C is the elasticity matrix (stiffness
coefficients);

where

is the viscous damping matrix
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q/q/q are generalized displacements

/ velocities / accelerations vectors;

f is the generalized forces vector.

If the damping coefficients are small, the
differential equations system becomes:

AG+Cq=f @)

Considering the rigid solid no perturbated,
the system of differential equations becomes

A4+Cq=0, 3)

where Q is the null vector).

If the Cartesian coordinates axis system is
central and principal, the quadratic 6 X6 inertia
matrix becomes diagonal

A=DIAG|m,mm,J,J . J, |, )

where m is the rigid solid mass and J, Jy,

J, are the principal inertia moments.
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Figure 1 Elastic triorthogonal bearing

2. MODAL ANALYSIS OF THE
RIGID SOLID WITH STRUCTURAL

SYMMETRIES

Considering that the rigid solid has a
vertical axis of symmetry (mass distribution,
geometrical configuration, bearings disposal)
and the coordinate system 1is central and
principal, the inertia matrix is diagonal. If the
elastic bearing system of the rigid solid is
composed from n supports with triorthogonal

stiffness (k. ki ki) like in fig. 1, with the

iy
position donJ; by the coordinates
Mi(xi,yi,zi) i:I,_n, the elasticity matrix
becomes:
_ Fu 212} )
Cor|Ca]°

where the component sub matrix have the
following structures and coefficients:

zkix 0 0
Ci=| 0 Thy 0 ©
0 0 Zkiz
0 Zkl'le' 0_
Crp=|-2kipzi 0 0 (7)
0 0 0
0 _Zkiyzi 0_
Cor=| Xkinzi 0 0 (8)
0 0 0]

Cy= DIAG[Z (k,-yz,-2 +hizy7 ) :

2 2 2 2
Z(kizxi +kix2i) , Z(kixyi + kjyxi

I

As the inertia matrix 1is diagonal, the
coefficients outside the main diagonal of the
elasticity matrix C are the coupling terms of

the equations of the system (3). Because there
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are only four non-zero stiffness coefficients
(cyj5 =c57 and o=y, the free movements of

the rigid solid are decoupled into four
subsystems with coupled vibrations. The
mathematical models of the subsystems with
coupled motion equations are as follows:

a)subsystem (X,(py) - side slip movement

coupled with rolling movement
mX-i—XZkix +(|)y kl'le' =0

) I
Jy(Py+szixZi+(Pyz kizXi +kixzi |=0

b)subsystem (Y,(px) - forward-back movement
coupled with pitch movement

mY—i—YZkiy—(px kiyZi =0
" 2 2) (D
3Oy - sziyzi + Oy, kipzi +kizyi |=0
c)subsystem (Z) - up-down movement
mZ+2 kiy =0 (12)
d)subsystem ((pz) - turning movement
(gyration)
.. 2 21
VELR +(PzZ(kixJ’i + ki x; )—0 (13)
In order to determine the natural

frequencies and the eigenvalues, we use the
next notations:

» for the pulsations of the no coupled
movements of translation (along the ccordinate
axis)

Z kix

px = (14)
m
D ki
py == (15)
m
k:
p7 = Z 1z (16)
m
» for the pulsations of the no coupled
movements of rotation
2 2
Z(kiyzi +kizyi )
Po, = (17)
Jx
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2 2
Dy = Z(kizxi +kz‘xzi) (18)
2 2
B Z(kixyz' + ki x; ) 9
Py, = 7. (19)

»the dynamic coupling terms for the (X,(py)
and (Y,(px) subsystems

I
oy = ;Zkz‘xzz‘

; (20)
ay = J_zkixzi

y

1
Br=——2 kiyzi

" 21
B2 =——Dkyzi

X

Considering the relations (14) to (21), the
natural pulsations and the eigenvalues of the
decoupled subsystems can be determined with
the next calculus formulae:

a)for the subsystem (X,(py)

1l > 2 _
P12 =SORT {—[p +p, F
1.2 2| Px TPy,

\/ 5 (22)
- 2 2
.l py—p j +4o0 0
( X Toy 172
Ll 2., 2
=———|py+p° %
K2 20 [pX p(Py
2 (23)
+ (pf\,—piyj +4o 0
b)for the subsystem (Y,(px)
3.4 = SORT i|:p2 +p’ F
34 277 oy
(24)

¥ \/(P)% - pf)x jZ +4BB>
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2
Px

H+

u ! [p2+p
34=""7—
2,07

+ \/(p§ - p(f)x )2 +4BB>

(25)

3. CASE STUDY - MODAL
ANALYSIS OF A REINFORCED
CONCRETE BRIDGE OF THE
ROMANIAN MOTORWAY A3

Figure 2 shows the elevation and the plan
view for a bridge made from twenty reinforced
concrete beams jointed through a 300 mm
thickness reinforced concrete plate. Each beam
is beared on the piers and on the abutments of
the bridge through four identical viscous-elastic
supports made from neoprene; there is a total
number of eighty neoprene bearings for the
entire bridge. The simplified model of the
bridge is shown in fig. 3.

In order to calculate the natural pulsations
and frequencies and the eigenvalues of the
bridge modeled as in fig. 2, the main
characteristics are the following:

mDimensions (as in detailed engineering
drawings and/or measured):

sfor “U” beams: 37100x1700/3280x 2200
lenghtxwidthxheight [mm]
=for the bridge: 200000 % 13300 x 2500
lenghtxwidthxheight [mm]

mStiffness of the neoprene bearings
(experimental measurements):

ke =k, =315x10°N/m =180

kiy =ky =315x10°N/m =180

ki, =k, =650x10°N/m =180

mMasses and inertia: according to table 1
(calculated)

mPosition of the mass center C against the
neoprene bearings (calculated): h = 1454,4mm

mPositions of the neoprene bearings on the
viaduct (related to the centered coordinate
system Cxyz) as in detailed engineering
drawings — see table 2.

Using the relations (14) to (19), the natural
pulsations p and the natural frequencies f

(calculated acc. to [9] and [10]) of the
uncoupled vibrations for the six degrees of
dynamic freedom are shown in table 3.

The figures from table 4 show the values of
the natural pulsations and frequencies and of
the eigenvalues for the decoupled subsystems
(with coupled movements) for a bridge section
(arche) composed from four ,,U” beams as in
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flgureh4 and figure 15 As t1~t can ble seen, therz (Y)(Px) are very weakly coupled, almost
are the same values for pulsations an uncoupled.
frequencies like in table 3. It means that the
movements inside the subsystems (X,(py) and
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Figure 2 Elevation and plan view of the bridge (viaduct) on the
Romanian motorway A3 at KM 29+602,75<—KM 29+801,25

Figure 3 The model of the bridge beared on eighty neoprene supports
30
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Table 1. Inertial characteristics (central and principal axis system)

Denomination Unit Arch of the viaduct (4 beams) Viaduct (20 beams)
Mass m kg 992,000 4,960,000
Products of inertia Kg-m? Jyy =Jyz =I5 =0
Jy | Kgm? 120.533x10° 16.025x10°
Moments
of Jy | Kgm’ 15.133x10° 73.270x10°
inertia 2 P 5
J, Kg'm 134.091x10 16.092x10

Table 2. Positions of the neoprene bearings
Bearing and coordinates [m]

Xi Yi Z; i Xi Yi Z; i Xi Yi Zi i Xi yi Zi
-5,51-98,05| -1,45] 21 1,11-58,05| -1,45 41 -5,5/18,05| -1,45] 61 1,1/ 58,05] -1,45
-4,41-98,05| -1,45 22 2,21-58,05| -1,45| 42 -4,4] 18,05| -1,45] 62 2,2/ 58,05] -1,45
-2,21-98,05| -1,45| 23 4,4-58,05| -1,45| 43 -2,2/ 18,05| -1,45] 63 4,4/ 58,05] -1,45
-1,11-98,05| -1,45| 24 5,51-58,05| -1,45| 44 -1,1] 18,05 -1,45| 64 5,5/ 58,05 -1,45
1,11-98,05] -1,45| 25 -5,51-21,95| -1,45] 45 1,1/ 18,05] -1,45| 65 -5,5/61,95| -1,45
2,2|-98,05| -1,45] 26 -4,41-21,95| -1,45] 46 2,2| 18,05] -1,45| 66 -4,4/61,95| -1,45
4,4-98,05| -1,45] 27 -2,21-21,95| -1,45] 47 4,4/ 18,05] -1,45| 67 -2,2/61,95| -1,45
5,5/-98,05| -1,45 28 -1,11-21,95| -1,45] 48 5,5/ 18,05| -1,45| 68 -1,161,95| -1,45
9 -5,51-61,95| -1,45| 29 1,1-21,95| -1,45| 49 -5,5121,95| -1,45] 69 1,1161,95] -1,45
10 | -4,4-61,95 -1,45] 30 2,21-21,95| -1,45| 50 -4,4/ 21,95| -1,45] 70 2,21 61,95 -1,45
11 -2,21-61,95| -1,45] 31 4,4-21,95| -1,45 51 -2,21 21,95 -1,45] 71 4,4 61,95 -1,45
12 -1,1-61,95| -1,45 32 5,51-21,95| -1,45] 52 -1,1]21,95| -1,45] 72 5,5 61,95| -1,45
13 1,1-61,95| -1,45 33 -5,51-18,05| -1,45] 53 1,11 21,95| -1,45| 73 -5,5/98,05| -1,45
14 2,2-61,95| -1,45| 34 -4,41-18,05| -1,45] 54 2,2{21,95 -1,45| 74 -4,4] 98,05| -1,45
15 4,4-61,95| -1,45| 35 -2,2-18,05| -1,45] 55 4,4/21,95 -1,45| 75 -2,2/ 98,05/ -1,45
16 5,5-61,95| -1,45| 36 -1,11-18,05| -1,45] 56 5,5[21,95| -1,45] 76 -1,1/98,05| -1,45
17 | -5,51-58,05) -1,45] 37 1,11-18,05| -1,45| 57 -5,5 58,05| -1,45 77 1,1{98,05] -1,45
18 | -4,4-58,05 -1,45] 38 2,2|-18,05| -1,45| 58 -4,4] 58,05| -1,45| 78 2,2/ 98,05] -1,45
19 | -2,2-58,05) -1,45] 39 4,4-18,05| -1,45] 59 -2,2| 58,05| -1,45] 79 4,4/ 98,05] -1,45
20 | -1,11-58,05| -1,45 40 5,5 18,05 -1,45] 60 -1,1] 58,05| -1,45] 80 5,5/ 98,05| -1,45

O[O\ [N | |G [N [ [ e

Table 3. Natural pulsations and frequencies (on the six degrees of dynamic freedom)

System Direction X Y Z O3 Dy (O
Arch of the viaduct p [rad/s] 7.13 7.13|  102.39] 167.67]  97.83| 11.30
(4 beams) f [Hz] 1.13 1.13]  16.30] 26.69 15.60 1.80
Viaduct p [rad/s] 7.13 7.13]  102.39] 105.49] 97.83|  7.34
(20 beams) f [Hz] 1.13 1.13) 1630 16.79] 15.60 1.17

Table 4 Modal analysis for an arch (section) of the viaduct (decoupled subsystems)

Subsystem Pulsations Frequencies Eigenvalues
(X,(py) pp=7.13rad /s f1=1.13Hz pny =0.000509rad / m
pr=9783rad /s fr=15.60Hz wy =—128.824rad / m
(v.0,) p3=7.13rad /s f3=1.13Hz nz =—0.000002rad / m
py=167.67rad /s f4=26.69Hz Ly =379.750rad /' m
(2) ps=pz =102.39rad /s f5=f7=1630Hz .
(0,) P6 =Py, =11.30rad /s f6 = fo, =1.80Hz _
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Table 5 Modal analyze for the viaduct (decoupled subsystems)

Subsystem Pulsations Frequencies Eigenvalues
(X,Qoy) py=7.13rad/s f1=1.13Hz py =0.000509rad / m
p2=97.83rad /s fr=1557Hz ny =—128.824rad / m
(Y,(Px) p3=7.13rad /s f3=113Hz nz =—0.000002rad / m
py4=105.49rad / s f4=16.79Hz ny =149.916rad /m
(2) ps=py =102.39rad / s fs=fz =1630Hz -
() P6 =Py, =7.34rad /s f6=rto, =1.17Hz }

The figures from table 5 show the values  figure 3. As for the arches, the movements inside
of the natural pulsations and frequencies and  the subsystems with coupled movements (X’(Py)
of the eigenvalues for the decoupled
subsystems (with coupled movements) for the
entire bridge composed from five sections  almost uncoupled.
(arches) considered being identical as in

and (Y, (Px) of the viaduct are very weak coupled,

. 13200
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Figure 4 The model of an arch of the viaduct
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Figure 5 The model of an arch of the viaduct (transversal section)

32



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI FASCICLE XIV

| 3280 .

2200

1700

Figure 6 The reinforced concrete ,,U” beam (axonometric view)
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Figure 7 The reinforced concrete ,,U” beam (transversal section)
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Figure 8 The ,,U” beam with concrete cover (transversal section)
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4. CONCLUSIONS

a) modeling a rigid solid with elastic or
viscous-elastic  bearings and symmetries
(structural, inertial, bearings) lead to more
simple linear mathematical models, with
differential equations decoupled into
subsystems easier to solve; in this case, we can
highlight the influences of different kinds of
characteristics (dimensions, masses, inertia,
stiffness) on the dynamic parameters of the
rigid solid (natural pulsations/frequencies,
eigenvalues);

b) if the physical model of the rigid solid
permits to chose a Cartesian coordinate system
which is central and principal, then the
differential equations of motion are coupled
only by the coefficients outside the principal
diagonal of elasticity matrix (elastic coupling
of movements), eventually by the dissipation
coefficients from the viscous damping matrix if
they are significant;

c) comparing the values of the
pulsations/frequencies from tables 3, 4 and 5,
we can say that the movements inside the
subsystems are almost uncoupled on the

“directions” (X,Y,Z,(px,(py,(pz); also the

values very small or very big of the eigenvalues
can explain the quasidecoupling of the
movements inside the subsystems;

d) analyzing the values from table 4 (for the
arches), we can find a group of three natural
frequencies in the domain 1.1+1.2 Hz, another
one in the domain 15.6+16.3 Hz and the 6-th
frequency being much bigger (26.69 Hz); this
grouping of frequencies and the big differences
between the values of domains’ limits can be
explained by the significant differences
between the bearings stiffness on vertical axis
Cz (compression effort) and on horizontal plane
xCy (shear efforts);

e) analyzing the values from table 5 (for the
entire bridge), we can find a group of three
natural frequencies in the domain 1.1+1.2 Hz
and another three in the domain 15.6+16.8 Hz;
in this case of simulation, the pitch movement

((Px) of the viaduct, which is almost decoupled

from the forward-back movement (Y), has a

natural frequency smaller than the pitch
movement of a single arch because of a bigger

value of the moment of inertia J, mainly;

f) the mass characteristics and the moment of
inertia for the entire bridge and for the arches
were calculated on the basis of the sizes of “U”
beam (according to fig. 6 and fig. 7) and those
of the beam with the cover of concrete plate of
300mm thickness. (fig. 8)
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