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ABSTRACT 
 

This paper proposes an approach of a six degree dynamic model of a rigid-
solid with some types of symmetries. These symmetries lead to simplified 
mathematical models, which are more easily to solve. If the rigid-solid is 
symmetrical beared by triorthogonal elastic links, the mathematical model 
becomes still simple and the vibrations are decoupled into four subsystems 
of movements: side slipping and rolling, forward motion and pitching, 
lifting motion, gyration. There are two case studies of modal analysis: for 
a viaduct with five arches made from reinforced concrete „U” beam and 
for an arch (between two piers of the viaduct) made from four reinforced 
concrete „U” beams. 
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1. INTRODUCTION 
The mathematical modeling uses the 

physical model of the rigid solid with six 
degrees of freedom (6DOF) with a finite 
number of viscous-elastic bearings [2], [3], [6], 
[11]. Dimensional and inertial characteristics of 
the rigid solid and rheological characteristics of 
the bearings (stiffness and damping) can be 
experimentally determined by direct 
measurements and by static and/or dynamic 
testing. According to [1], [4], [5], [7] and [8], 
the differential equations of the movements of 
the rigid solid with viscous-elastic bearings are 
coupled by stiffness and damping coefficients. 
The system of the equations can be written as 
follows: 
 
 fqCqBqA   , (1) 

 
where A  is the inertia matrix; 

B  is the viscous damping matrix 

(damping coefficients); 
C  is the elasticity matrix (stiffness 

coefficients); 

q / q / q  are generalized displacements 

/ velocities / accelerations vectors; 

f  is the generalized forces vector. 

 If the damping coefficients are small, the 
differential equations system becomes: 
 
 fqCqA   (2) 

 
 Considering the rigid solid no perturbated, 
the system of differential equations becomes 
 
 0 qCqA   , (3) 

 
where 0  is the null vector). 

 If the Cartesian coordinates axis system is 
central and principal, the quadratic 66   inertia 
matrix becomes diagonal 
 
  zyx J,J,J,m,m,mDIAGA   , (4) 

 
where m  is the rigid solid mass and xJ , yJ , 

zJ  are the principal inertia moments. 
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2. MODAL ANALYSIS OF THE 
RIGID SOLID WITH STRUCTURAL 

SYMMETRIES 
Considering that the rigid solid has a 

vertical axis of symmetry (mass distribution, 
geometrical configuration, bearings disposal) 
and the coordinate system is central and 
principal, the inertia matrix is diagonal. If the 
elastic bearing system of the rigid solid is 
composed from n  supports with triorthogonal 

stiffness  iziyix k,k,k  like in fig. 1, with the 

position done by the coordinates 

  n,iz,y,xM iiii 1 , the elasticity matrix 

becomes: 
 

 









2221

1211
CC

CC
C  , (5) 

 
where the component sub matrix have the 
following structures and coefficients: 
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As the inertia matrix is diagonal, the 
coefficients outside the main diagonal of the 
elasticity matrix C  are the coupling terms of 

the equations of the system (3). Because there 

are only four non-zero stiffness coefficients 
( 5115 cc   and 4224 cc  ), the free movements of 

the rigid solid are decoupled into four 
subsystems with coupled vibrations. The 
mathematical models of the subsystems with 
coupled motion equations are as follows: 
a)subsystem  y,X   - side slip movement 

coupled with rolling movement 
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(10) 

 
b)subsystem  x,Y   - forward-back movement 

coupled with pitch movement 
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(11) 

 
c)subsystem  Z  - up-down movement 

 

 0  izkZZm   (12) 

 
d)subsystem  z  - turning movement 

(gyration) 
 

   022   iiyiixzzz xkykJ   (13) 

 
In order to determine the natural 

frequencies and the eigenvalues, we use the 
next notations: 
►for the pulsations of the no coupled 
movements of translation (along the ccordinate 
axis) 
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►for the pulsations of the no coupled 
movements of rotation 
 

 
 

x

iiziiy

J

ykzk
p

x

 


22

 (17) 

 

M
k

k

k

z

x

yi

ix

iy

iz

 
 

Figure 1 Elastic triorthogonal bearing 
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►the dynamic coupling terms for the  y,X   

and  x,Y   subsystems 
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Considering the relations (14) to (21), the 

natural pulsations and the eigenvalues of the 
decoupled subsystems can be determined with 
the next calculus formulae: 
a)for the subsystem  y,X   
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b)for the subsystem  x,Y   
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3. CASE STUDY – MODAL 
ANALYSIS OF A REINFORCED 
CONCRETE BRIDGE OF THE 
ROMANIAN MOTORWAY A3 
Figure 2 shows the elevation and the plan 

view for a bridge made from twenty reinforced 
concrete beams jointed through a 300 mm 
thickness reinforced concrete plate. Each beam 
is beared on the piers and on the abutments of 
the bridge through four identical viscous-elastic 
supports made from neoprene; there is a total 
number of eighty neoprene bearings for the 
entire bridge. The simplified model of the 
bridge is shown in fig. 3. 

In order to calculate the natural pulsations 
and frequencies and the eigenvalues of the 
bridge modeled as in fig. 2, the main 
characteristics are the following: 

■Dimensions (as in detailed engineering 
drawings and/or measured): 
▪for “U” beams: 22003280170037100  /  
lenght×width×height [mm] 
▪for the bridge: 250013300200000   
lenght×width×height [mm] 

■Stiffness of the neoprene bearings 
(experimental measurements): 

m/N,kk xix
610153   801,i   

m/N,kk yiy
610153   801,i   

m/Nkk ziz
610650   801,i   

 ■Masses and inertia: according to table 1 
(calculated) 

■Position of the mass center C against the 
neoprene bearings (calculated): mm4,1454h   

■Positions of the neoprene bearings on the 
viaduct (related to the centered coordinate 
system Cxyz) as in detailed engineering 
drawings – see table 2. 
 Using the relations (14) to (19), the natural 
pulsations p  and the natural frequencies f  

(calculated acc. to [9] and [10]) of the 
uncoupled vibrations for the six degrees of 
dynamic freedom are shown in table 3. 
 The figures from table 4 show the values of 
the natural pulsations and frequencies and of 
the eigenvalues for the decoupled subsystems 
(with coupled movements) for a bridge section 
(arche) composed from four „U” beams as in 
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figure 4 and figure 5. As it can be seen, there 
are the same values for pulsations and 
frequencies like in table 3. It means that the 
movements inside the subsystems  y,X   and 

 x,Y   are very weakly coupled, almost 

uncoupled. 

Figure 2 Elevation and plan view of the bridge (viaduct) on the 
Romanian motorway A3 at KM 29+602,75↔KM 29+801,25 
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Figure 3 The model of the bridge beared on eighty neoprene supports 
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Table 1. Inertial characteristics (central and principal axis system)

Denomination Unit Arch of the viaduct (4 beams) Viaduct (20 beams) 
Mass m  kg 992,000 4,960,000 

Products of inertia Kg·m2 0 zxyzxy JJJ  

xJ  Kg·m2 120.533×106 16.025×109 

yJ  Kg·m2 15.133×106 73.270×106 
Moments 

of 
inertia 

zJ  Kg·m2 134.091×106 16.092×109 

 
Table 2. Positions of the neoprene bearings

Bearing and coordinates [m] 
i xi yi zi i xi yi zi i xi yi zi i xi yi zi 
1 -5,5-98,05 -1,45 21 1,1-58,05 -1,45 41 -5,5 18,05 -1,45 61 1,1 58,05 -1,45
2 -4,4-98,05 -1,45 22 2,2-58,05 -1,45 42 -4,4 18,05 -1,45 62 2,2 58,05 -1,45
3 -2,2-98,05 -1,45 23 4,4-58,05 -1,45 43 -2,2 18,05 -1,45 63 4,4 58,05 -1,45
4 -1,1-98,05 -1,45 24 5,5-58,05 -1,45 44 -1,1 18,05 -1,45 64 5,5 58,05 -1,45
5 1,1-98,05 -1,45 25 -5,5-21,95 -1,45 45 1,1 18,05 -1,45 65 -5,5 61,95 -1,45
6 2,2-98,05 -1,45 26 -4,4-21,95 -1,45 46 2,2 18,05 -1,45 66 -4,4 61,95 -1,45
7 4,4-98,05 -1,45 27 -2,2-21,95 -1,45 47 4,4 18,05 -1,45 67 -2,2 61,95 -1,45
8 5,5-98,05 -1,45 28 -1,1-21,95 -1,45 48 5,5 18,05 -1,45 68 -1,1 61,95 -1,45
9 -5,5-61,95 -1,45 29 1,1-21,95 -1,45 49 -5,5 21,95 -1,45 69 1,1 61,95 -1,45

10 -4,4-61,95 -1,45 30 2,2-21,95 -1,45 50 -4,4 21,95 -1,45 70 2,2 61,95 -1,45
11 -2,2-61,95 -1,45 31 4,4-21,95 -1,45 51 -2,2 21,95 -1,45 71 4,4 61,95 -1,45
12 -1,1-61,95 -1,45 32 5,5-21,95 -1,45 52 -1,1 21,95 -1,45 72 5,5 61,95 -1,45
13 1,1-61,95 -1,45 33 -5,5-18,05 -1,45 53 1,1 21,95 -1,45 73 -5,5 98,05 -1,45
14 2,2-61,95 -1,45 34 -4,4-18,05 -1,45 54 2,2 21,95 -1,45 74 -4,4 98,05 -1,45
15 4,4-61,95 -1,45 35 -2,2-18,05 -1,45 55 4,4 21,95 -1,45 75 -2,2 98,05 -1,45
16 5,5-61,95 -1,45 36 -1,1-18,05 -1,45 56 5,5 21,95 -1,45 76 -1,1 98,05 -1,45
17 -5,5-58,05 -1,45 37 1,1-18,05 -1,45 57 -5,5 58,05 -1,45 77 1,1 98,05 -1,45
18 -4,4-58,05 -1,45 38 2,2-18,05 -1,45 58 -4,4 58,05 -1,45 78 2,2 98,05 -1,45
19 -2,2-58,05 -1,45 39 4,4-18,05 -1,45 59 -2,2 58,05 -1,45 79 4,4 98,05 -1,45
20 -1,1-58,05 -1,45 40 5,5 18,05 -1,45 60 -1,1 58,05 -1,45 80 5,5 98,05 -1,45

 
 

Table 3. Natural pulsations and frequencies (on the six degrees of dynamic freedom)

System Direction X  Y  Z  x  y  z  

p [rad/s] 7.13 7.13 102.39 167.67 97.83 11.30Arch of the viaduct 
(4 beams) f [Hz] 1.13 1.13 16.30 26.69 15.60 1.80

p [rad/s] 7.13 7.13 102.39 105.49 97.83 7.34Viaduct 
(20 beams) f [Hz] 1.13 1.13 16.30 16.79 15.60 1.17

 

 

Table 4 Modal analysis for an arch (section) of the viaduct (decoupled subsystems)
Subsystem Pulsations Frequencies Eigenvalues 

s/rad.p 1371   Hz.f 1311   m/rad.00050901    y,X   
s/rad.p 83972   Hz.f 60152   m/rad.8241282   

s/rad.p 1373   Hz.f 1313   m/rad.00000203    x,Y   
s/rad.p 671674   Hz.f 69264   m/rad.7503794   

 Z  s/rad.pp Z 391025   Hz.ff Z 30165   - 

 z  s/rad.pp
z

30116    Hz.ff
z

8016    - 
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The figures from table 5 show the values 

of the natural pulsations and frequencies and 
of the eigenvalues for the decoupled 
subsystems (with coupled movements) for the 
entire bridge composed from five sections 
(arches) considered being identical as in 

figure 3. As for the arches, the movements inside 
the subsystems with coupled movements  y,X   

and  x,Y   of the viaduct are very weak coupled, 

almost uncoupled. 

Table 5 Modal analyze for the viaduct (decoupled subsystems)
Subsystem Pulsations Frequencies Eigenvalues 

s/rad.p 1371   Hz.f 1311   m/rad.00050901    y,X   
s/rad.p 83972   Hz.f 57152   m/rad.8241282   

s/rad.p 1373   Hz.f 1313   m/rad.00000203    x,Y   
s/rad.p 491054   Hz.f 79164   m/rad.9161494   

 Z  s/rad.pp Z 391025   Hz.ff Z 30165   - 

 z  s/rad.pp
z

3476    Hz.ff
z

1716    - 
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Figure 4 The model of an arch of the viaduct 
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Figure 5 The model of an arch of the viaduct (transversal section) 
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Figure 6 The reinforced concrete „U” beam (axonometric view) 
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Figure 7 The reinforced concrete „U” beam (transversal section) 
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Figure 8 The „U” beam with concrete cover (transversal section) 
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4. CONCLUSIONS 
a) modeling a rigid solid with elastic or 
viscous-elastic bearings and symmetries 
(structural, inertial, bearings) lead to more 
simple linear mathematical models, with 
differential equations decoupled into 
subsystems easier to solve; in this case, we can 
highlight the influences of different kinds of 
characteristics (dimensions, masses, inertia, 
stiffness) on the dynamic parameters of the 
rigid solid (natural pulsations/frequencies, 
eigenvalues); 
b) if the physical model of the rigid solid 
permits to chose a Cartesian coordinate system 
which is central and principal, then the 
differential equations of motion are coupled 
only by the coefficients outside the principal 
diagonal of elasticity matrix (elastic coupling 
of movements), eventually by the dissipation 
coefficients from the viscous damping matrix if 
they are significant; 
c) comparing the values of the 
pulsations/frequencies from tables 3, 4 and 5, 
we can say that the movements inside the 
subsystems are almost uncoupled on the 
“directions” ( X , Y , Z , x , y , z ); also the 

values very small or very big of the eigenvalues 
can explain the quasidecoupling of the 
movements inside the subsystems; 
d) analyzing the values from table 4 (for the 
arches), we can find a group of three natural 
frequencies in the domain 1.1÷1.2 Hz, another 
one in the domain 15.6÷16.3 Hz and the 6-th 
frequency being much bigger (26.69 Hz); this 
grouping of frequencies and the big differences 
between the values of domains’ limits can be 
explained by the significant differences 
between the bearings stiffness on vertical axis 
Cz (compression effort) and on horizontal plane 
xCy (shear efforts); 
e) analyzing the values from table 5 (for the 
entire bridge), we can find a group of three 
natural frequencies in the domain 1.1÷1.2 Hz 
and another three in the domain 15.6÷16.8 Hz; 
in this case of simulation, the pitch movement 
 x  of the viaduct, which is almost decoupled 

from the forward-back movement  Y , has a 

natural frequency smaller than the pitch 
movement of a single arch because of a bigger 
value of the moment of inertia xJ  mainly; 

f) the mass characteristics and the moment of 
inertia for the entire bridge and for the arches 
were calculated on the basis of the sizes of “U” 
beam (according to fig. 6 and fig. 7) and those 
of the beam with the cover of concrete plate of 
300mm thickness. (fig. 8) 
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