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ABSTRACT 
 

Construction of passive insulation elements in neoprene single 
microstructure mixture has demonstrated that the isolators can have the 
necessary elastic characteristics but low internal damping. The reduced 
scale models have in the structure viscoelastic materials basing on natural 
rubber symmetrically distributed in respect to geometrical reference 
system chosen for the isolator. The materials consisting of natural or 
synthetic rubber are used as filling elements symmetrically located so that 
globally the isolator can be properly characterized both at compression 
and shear. This paper presents a study case with two material type 
modelled as Voigt-Kelvin element and Hooke-Maxwell element  and three 
neoprene bearings modelled with: Voigt-Kelvin elements, Hooke-Maxwell 
elements and Voigt-Kelvin + Hooke-Maxwell elements. 

 
KEYWORDS: composite neoprene, rheological modelling, vibration and 
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1. INTRODUCTION 
Base isolation systems intended for seismic 

shocks and vibrations consist of rubber or 
neoprene viscoelastic elements constructed in 
various technical solutions. The most frequent 
passive isolation systems are realized basing on 
neoprene elements in a sandwich construction 
having intermediary steel shims and the same 
neoprene mixture for each layer. In this case, 
the hysteretic dissipation factor of the isolator 
is equal to that for a single neoprene layer, all 
the layers being identical from the physical-
mechanical and geometric points of view [2]. 

This study puts into evidence the 
possibility to realize and model the viscoelastic 
isolators based on microstructure composite 
mixture consisting of neoprene smoke black and 
chemical foam compound or solids with 
entrapped air (cork poudrette). Also, this 
approach points out the possibility to realize 
and model the macrostructure composites by 
assigning geometric spaces defined inside the 

isolator geometric space. 
The rheological modelling for the neoprene 

isolator behaviour shows the increase of the 
internal energy dissipation by increasing the 
hysteretic factor (damping structure coefficient) 
[1], [2], [3], [4]. 

2. THE STRUCTURE OF THE 
COMPOSITE NEOPRENE 

The passive isolation elements for dynamic 
shocks and vibrations have to comply with the 
following conditions: 
-assuring provision of the bearing capacity by 
appropriate values of the mechanical resistance; 
-assuring provision of the rigidity necessary to 
attain static deflections under loading 
conducting to avoid the significant resonance 
with destroying character; 
-optimisation of the requirements concerning 
relative low rigidity with those for high internal 
dissipation. 

In order to obtain the above mentioned 
desiderates, a new approach regarding 
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realization and modelling of the composite 
neoprene isolators is necessary. This approach 
will introduce an original concept, namely 
micro and macro structural composite 
antivibrating viscoelastic materials. 

The viscoelastic materials consisting of 
micro structural composite neoprene by using 
some appropriate grading of the powder 
materials – smoke black and air introduction in 
nanometric spaces by cork poudrette or 
chemical foam compound; thus, the composite 
neoprene at the microstructure level may be 
realized physically and technologically and may 
be rheologically modelled as follows: 
-composite neoprene microstructure having low 
damping expressed by the hysteretic factor 1  

and low rigidity by the modulus of elasticity in 
shear 1G  or rigidity factor 1k ; 

-composite neoprene microstructure with high 
damping expressed by the hysteretic factor 2  

and high rigidity by the modulus of elasticity in 
shear 2G  or the rigidity factor 2k . 

The isolator with composite macrostructure 
consists of identical neoprene layers separated 
by steel shims, each layer consisting of 
macrostructure distinct units having various 
physical-mechanical characteristics. In this 
case, the neoprene elements are realized by 
controlled structure of the materials with j , 

jk , n,j 1 , so that after vulcanisation the 

isolator could be obtained as in fig. 1 and fig. 2 
(pos. 1 is from micro composite structure 
neoprene modelled as Voigt-Kelvin and pos. 2 
is from micro composite structure neoprene 
modelled as Hooke-Maxwell. 
 

 

 
Figure 1 Isolator obtained after vulcanisation 

(1 - Voigt-Kelvin model unit) 
 

 

 
Figure 2 Isolator obtained after vulcanisation 

(2 - Hooke-Maxwell model unit) 
 

3. THE PARAMETERS OF THE 
COMPOSITE NEOPRENE LAYERS 

The Voigt-Kelvin model illustrated in fig. 3 
is characterized by elastic coefficient (modulus) 
k  and the structure dissipation coefficient 
(modulus) or hysteretic modulus  . 
 

 
 

Figure 3 The Voigt-Kelvin model 
 

The complex dynamic rigidity is expressed 
under the form 
 

    



 
 ik

k

c
ikickK

~
11  , (1) 

 
where: 

k  is the rigidity coefficient [N/m] 

k

c
  - hysteretic factor 

c  – viscous damping coefficient [Ns/m] 
  – the pulsation of the exciting force F 

(circular frequency) [rad/s] 

 1i  - imaginary unit. 
 



THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI FASCICLE XIV 

 7

 
 

Figure 4 Hooke-Maxwell model 
 

The Hooke-Maxwell model represented in 
fig. 4 is characterized by complex dynamic 
rigidity given by relation [5] 
 

       21 iKKK
~

 , (2) 

 
where 

 1K  is the dynamic elastic modulus 

 2K  - energy internal loss modulus. 

The two above modulus can be calculated 
with the next relations: 
 

    
222

2

22
21

2
21

1





ck

ckkkk
K  (3) 

 

  
222

2

2
2

2





ck

ck
K  (4) 

 
 The internal dissipation coefficient or the 
hysteretic factor of the Hooke-Maxwell model 
is defined under the form [6]: 
 

    
    22

21
2
21

2
2

1

2










ckkkk

ck

K

K
 (5) 

 
 With the notation from relation (5), the 
expression of the complex dynamic rigidity 
becomes: 
 

        iKK
~

11  (6) 

 
 If we consider the rigidity ratio 
 

 N
k

kk



 1

1

21  , (7) 

 

where 
1

2
k

k
N  , the hysteretic factor can be 

written as follows: 
 

    
222

2

2 1






ck

ck
 (8) 

 
 The hysteretic factor    achieves the 

maximum value at the pulsation: 
 

 



c

k
M

2  (9) 

 
 The maximum value of the hysteretic factor 
can be calculated with the relation: 
 

  




2

1
Mmax  (10) 

 
 Considering the relative exciting pulsation 
(the pulsation ratio) 
 

 
1

2









M

 , (11) 

 
the expression of the complex dynamic rigidity 
becomes 
 

        iKK
~

11  (12) 

 
where the significant parametric relations for 
the Hooke-Maxwell model are: 
 

  
2

2

11
1




 kK  (13) 

 

  
22 1

1

1
2











 max  (14) 

 
 Figure 5 shows the diagram of the 
adimensional dynamic elastic modulus  11 k/K  

and fig. 6 shows the diagram of the energy internal 
loss modulus    for different values of the  . 

 

 
 

Figure 7 The composite viscous elastic layer 
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Figure 5 The diagram of the adimensional dynamic elastic modulus  11 k/K  
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Figure 6 The diagram of the energy internal loss modulus    
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In order to establish the elastic and the 
dissipation parameters for one layer of macro 
structural composite neoprene, we consider the 
example of the structure from fig. 7. Each layer 
consists of two V-K units and two H-M units 
connected in parallel. 

If we consider that a macro composite layer 
is made from n  units (V-K or/and H-M) with 

  n,j,K jj 1 , the complex rigidity is: 

 

  
 


n

j

n

j
jjj KiKK

~

1 1
 (15) 

 
 The relation (15) can be written as follows 
 

  pp iKK
~  1  (16) 

 
where: pK  is the total dynamic rigidity 

  p  - total hysteretic factor for the layer. 

 The above parameters can be calculated 
with the next formulae: 
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 (17) 
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H

 
 

Figure 8 The composite viscous elastic layer 
 
 In case of an isolator consisting of m  
serial connected layers, identical from the 
physical and geometrical point of view and 
separated by steel shims (fig. 8 shows an 
isolator with four identical layers), we have: 
 

 
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 Relation (20) can be written 
 

  isolisolisol iKK
~  1  , (21) 

 
where the parameters of the isolator can be 
calculated as follows: 
 

 



n

j
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K

1

1
 (22) 
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Taking into account that the hysteretic 

factor can be written function of critical 
damping jj  2 , we have: 

 

 




j

jj
isol K

K
2  (24) 

 

4. NUMERICAL SIMULATION 
The goal of the numerical simulation is to 

calculate the elastic and damping parameters of 
an isolator made from composite neoprene with 
micro and macrostructure. We consider a 
rectangular isolator with composite structure 
made from four neoprene layers like in fig. 8. 
The sizes of the isolator are mHba 1  and 
the viscous elastic units are made from 
neoprene with micro composite structure and 
mechanical characteristics like in Table 1. 
 

Table 1. Mechanical and geometrical 
characteristics of the neoprene units

Neoprene type SAB 31 SAB 4a 
E [kN/m2] 4300 7000
G [kN/m2] 800 1160

Hardness [0ShA] 55 65
 0.170 0.250
ζ 0.085 0.125

Shape coefficient  0.5 0.5
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For each viscoelastic unit with the 
dimensions m... 2505050  , the elastic 
coefficients has the values acc. to Table 2. 
 

Table 2. Elastic coefficients of the neoprene
units

Neoprene type SAB 31 SAB 4a
Compress. coeff. zK  [kN/m] 5800 9400

Shearing coeff. xK  [kN/m] 800 1160

 
 Taking into consideration the physical 
model from fig. 8 and the values of the two 
units types from Table 1 and Table 2, we can 
calculate the elastic and the damping 
parameters of the isolator function of the 
rheological model as follows: 
 
a)Voigt – Kelvin model (V-K) 

-neoprene units: 2 × SAB 31 + 2 × SAB 4a 
-mathematical model: fig. 9 
-calculus relations: 

 

  zz
z
layer KKK 212   (26) 

 

  xx
x
layer KKK 212   (27) 
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4
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 x
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x
isol KK

4

1
  (30) 

 

 KV
layer

KV
isol

   (31) 

 
-elastic and damping parameters: Table 3 

 
Table 3. Elastic and damping parameters of the 

neoprene isolator (V-K model)
Parameter Layer Isolator

Compress. coeff. zK  [kN/m] 30400 7600

Shearing coeff. xK  [kN/m] 3920 980

Hysteretic dissipation factor 0.218 0.218
 

 
 

 
 

Figure 9 Voigt – Kelvin mathematical model (V-K) 
 
 
 

 
 

Figure 10 Hooke-Maxwell mathematical model (V-K) 
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Figure 11 Composite mathematical model (V–K + H-M) 
 
 
b)Hooke-Maxwell model (H-M) 

-neoprene units: SAB 31 + SAB 4a 
(composite microstructure) 

-mathematical model: fig. 10 
-calculus relations: (2) to (14) and 

 

 22 1221 maxmaxmax   (32) 

 
   12 1 KK   (33) 

 

 
zlayer

KK MH
z 11 4  (34) 

 

 
xlayer

KK MH
x 11 4  (35) 

 

 MH
unit

MH
layer

MH
isol

   (36) 

 

 MH
z

MH
z layerisol

KK   11 4

1
 (37) 

 

 MH
x

MH
x layerisol

KK   11 4

1
 (38) 

 
-elastic and damping parameters: Table 4 
-input data: 

61250 .,max   

1415315  s.Hzf M  

-elastic and damping parameters: Table 4 
 
c)Composite Voigt-Kelvin + Hooke-Maxwell 
model (V–K + H-M) 

-neoprene units: 2 × V-K + 2 × H-M 
-mathematical model: fig. 11 
-calculus relations: (2) to (14) and 
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~

K
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1
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-elastic and damping parameters: Table 5 

 
Table 4. Elastic and damping parameters of the 

neoprene isolator (H-M model)
Parameter Unit Layer Isolator

  2.61 - - 
Compression coeff.

zK  [kN/m] 8380 33520 8380

Shearing coeff. xK
[kN/m] 

1150 4600 1150

Hysteretic 
dissipation factor 0.500 0.500 0.500

 
Table 5. Elastic and damping parameters of the 

neoprene isolator (V-K + H-M model)
Parameter Layer Isolator

Compress. coeff. zK  [kN/m] 28360 7900

Shearing coeff. xK  [kN/m] 3900 975

Hysteretic dissipation factor 0.380 0.380
 

5. CONCLUSIONS 
By rheological modelling of the micro and 
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macro structural dissipative isolators in 
composite neoprene, high performances as 
global elasticity as well as internal dissipation 
can be attained. 

Thus, we conclude as follows: 
- the isolator rigidity in case of compression for 
the first two models remains almost the same 

meaning that m/kNK KV
z 7600 , 

m/kNK KV
x 980  for the Voigt-Kelvin 

model and m/kNK MH
z 8380  , 

m/kNK MH
x 1150  for the Hooke-Maxwell 

model; 
- the internal dissipation expressed by the 
hysteretic factor is much higher for the 
neoprene composite Hooke-Maxwell modelled 
as compared with Voigt-Kelvin model, meaning 

5000.MH
isol    and 2180.KV

isol   ; 

- the rigidity coefficients in case of composite 
neoprene isolator with Voigt-Kelvin and 
Hooke-Maxwell elements have lower values 
than the Hooke-Maxwell model and the 

hysteretic damping 3800.comp
isol  . 

Based on the case studies, optimum and 
efficient solution for base isolation systems 
consisting of micro and macro structural 
composites could be found. 
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