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ABSTRACT 
 

Due to this Fourier series exclusive interpretation applied to periodical 
signals, which shows that a stationary harmonic signal with a single 
pulsation   cannot contain components of other pulsations but its own 
pulsation , there is the opinion that stationary harmonic signals cannot 
stimulate physical systems which have their own pulsations different from 
. The authors’ research have demonstrated that this theory is not true. 
More than this, signals considered identical, that is with identical 
amplitudes, phases and pulsations, are not identical from the spectral 
point of view if the signals have different durations and this can be noticed 
in many practical situations. 
 
KEYWORDS: periodical signal, Fourier series, harmonics, amplitude, 
errors, spectral component, spectrum 

 

1. INTRODUCTION 
A signal is considered and interpreted as a 
variable that defines a time dependent physical 
phenomenon. As a generalized form, the signal 

is analytically defined, as a real function  tf , 

with a single real variable that is t (=time). 
While with respect to commonly accepted 
criteria,  the signals were classified into several 
categories [1], for this paper there were 
selected only the following categories:

                                                                                   Table 1 Signal categories 
Signal 

Deterministic Random 
Periodical Non 

periodical 
   

Harmonic Non-harmonic     
Stationary Non-

Stationary 
Stationary Non-

Stationary 
    

  
The best known and also the most commonly 
used periodical signals will be shortly presented 
below: 

The signal      0f t A t sin t    is a 

harmonic signal, where  A t  is the amplitude, 

0  is its own pulsation,   is initial phase; the 

signal is stationary for  A t const  and non-

stationary for  A t const .  If   atA t Ce , 

then the signal is called dampened signal, 
where a is the dampening factor [4]. 
 

 
The stationary non-harmonic signal can be 
found under many shapes, the most common of 
them being the “saw tooth” signal, originating 

from    0f t a t kT  , the rectangular signal, 

originating from  

 



0 0 0

0 0 0 0

a, t kT , kT T
f t

0, t kT T , kT T

   
 

   
, 

the “impulse train” signal that originates from  

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com   For evaluation only.



FASCICLE XIV                                    THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI                                  

 32 

  0

0

a, t kT
f t

0, t kT


 


 where 0T

 is its own period 

0 0T 2   ,   0k int t / T , int is the ”whole 

part of...” function,  is a subunit and positive 
coefficient which characterizes the so-called 
filling factor of the signal, for the signal 
has thelevel a during the first half of the period 
and level 0 for the other second half. If the 

amplitude (the maximum value of  f t  signal 

on a T period) is constant in time, it means that 
the signals are stationary, if the amplitude is 
variable in time, the signals are known as non-
stationary.  
Time t is only considered for positive values, 
t 0 .   
When talking about deterministic and non-
periodical signals (signals that follow a known 
and reproducible rule and contain no repetitive 
sequences within their entire duration), we refer 
to three categories of signals that are by now 
classics:  

- step signal  
a, t 0

f t
0, t 0


 


,  

- ramp signal  
at , t 0

f t
0, t 0


 


 and  

- impulse signal (or Dirac function), 

which could also be written as  t  and 
be defined in many ways for different 
technical needs.  

We will use the simplest definition of the 
Dirac function, characterized by two 
simultaneous valid conditions   

 
t a

t
0, t a

 
  


,  t dt 1





  . Besides the 

above signals there are infinitely more non 
periodical signals that can be artificially 
produced or that may be received from the 
environment, such as the sound signal from a 
concert, where the signal rule is provided by the 
musical score and each instrument’s specific 
resonance.  
Random signals are those signals that cannot be 
described by a rule. That is why random signals 
cannot be considered deterministic signals 
because there is no connection between cause 
(the rule) and effect (the signal) through within 
reproducible conditions. Such examples can be 
the evolution of the car’s engine RPM during 
its running life, daily air temperature variation 
at a certain location and so on. Theoretically, 
some artificially produced functions can be 
interpolated with such random signals, given 

specific time limits  1 2t t ,t  and the 

acceptance of a certain amount of inaccuracy, 
thus obtaining a deterministic signal. While this 
is the general approach for interpreting real life 
signals by deterministic signals, there are two 
issues that must be solved during this process:  

-finding the best adequate interpolation 
functions  

-eliminating the errors and interference 
during the signal’s acquisition.  
All the signals described above are considered  
continuous signals, although the mathematically 
speaking some of them, such as the saw tooth, 
rectangular or impulse signals offer obvious 
discontinuities. In spite of this, the 
mathematical operations of integration, 
derivation and operational computation are 
done by ignoring the inherent inaccuracy. For 
some applications, such as Fourier series 
coefficients determination, only Dirichlet 
conditions are enough (the function which 
describes the signal is bound, has a finite 
number of discontinuities and finite extremes 
during its period), conditions which cannot be 
fulfilled by the impulse signal only. 
Mathematics creates the possibility that every 
stationary periodical non-harmonic signal with 

0  pulsation  be interpolated with an infinite 
series of stationary harmonic functions whose 
pulsation is a multiple of the signal pulsation 

0n , n 1,2,3    . Based on this 
mathematical artifice, we are talking about 
Fourier series, one can explain the fact that any 
periodical non-harmonic signal has within 
sources able to stimulate a wide range of 
physical systems with own frequency equaling 

any signal components 0n , n 1,2,3    
although not necessarily with equal signal 

pulsations 0 . Also, from Fourier series theory 
results that a pure harmonic signal doesn’t 

contain signals with superior pulsations 0n . 
Due to this Fourier series exclusive 
interpretation applied to periodical signals, 
which shows that a stationary harmonic signal 

with a single pulsation 0  cannot contain 
components of other pulsations but its own 

pulsation 0 , there is the opinion that 
stationary harmonic signals cannot stimulate 
physical systems which have their  own 

pulsations different from 0 .  The authors’ 
research demonstrated that this theory is not 
true [3], [5]. More than this, signals considered 
identical, that is with identical amplitudes, 
phases and pulsations, are not identical from 
the spectral point of view if the signals have 
different durations and this can be noticed in 
many practical situations. 
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2. FOURIER SERIES AND 
 ITS PROPERTIES 

A stationary periodical signal  g t  with the 

period 0
0

2
T

 


 , where 0  is the signal 

pulsation, which fulfils the Dirichlet conditions, 
can be represented by a mathematical series 
whose terms are harmonic functions with 

pulsations multiple of the 0  pulsation. The 

0  pulsation is called fundamental pulsation 
and the harmonic function with the pulsation 

equal to 0  is called fundamental harmonic. 
Harmonic functions with pulsations 

0n , n 2,3,    are called n order 
harmonics. The general form for the series of 
harmonic functions is: 
 

     n 0 n 0
n 0

f t a cos n t b sin n t




           (1) 

 
where the series has an infinite number of 
members and their values are: 
 

 

   

   

0

0

0

T

0 0
0

T

n 0
0

T

n 0
0

1
a g t dt ; b 0;

T

2
a g t cos n t dt ;

T

2
b g t sin n t dt ; n 1,2,

T

  

    

     





 

 (2) 

 

The constant 0a , which is a measure of signal 

 g t  asymmetry  with respect to the abscissa. 
Each harmonic component contains two terms 
from the same pulsation creating a 
trigonometric equivalent function: 
 

   0 n 0 n
1

f t a A sin n t


        (3) 

 

where the amplitude nA  and phase n  result 
from the coefficients identification: 
 

2 2
n n n

n
n

n

A a b

a
arctg

b


 


 



 (4) 

By using the (3) formula, with coefficients 
calculated according to the relation (4), one 
finds that a speci fic order n harmonic is a 
stationary sinusoidal signal with its own 
amplitude and phase.  In expressions (3) and (4) 
one notices that a certain harmonic of order n is 
actually a signal  produced by a rotating vector 

nv


 (complex number), having modulus nA  and 

phase n . 
 

 0 nj n t
n nv A e

  
 


 (5) 

where components nb  are on the real axis and 

na  are on the imaginary axis. 
To determine the harmonics of a periodic signal 
is not only a theoretical problem which allows 
decomposing a periodic function into other 
periodic functions. Harmonics existence are 
strongly felt in practice because a non harmonic 
periodic signal generates an infinite number of 
excitation sources having frequencies equal to 
multiples of the basic signal frequency and 
these sources produce obvious effects by 
stimulating the physical systems with pulsations 
(frequencies) equal to any multiple of the 
signal’s own pulsation (frequency) [1] (pp.127).  
Frequency multipliers used in radiotechnics are 
based solely on this obviously very real 
phenomenon. For multiplication, a stationary 
harmonic signal is distorted to generate 

harmonic components with pulsations 0n  
whence, by filtration, the component with the 
value n that is desired is extracted, n usuallly 
being equal to 2,...5. 
This phenomenon  is also found when referring 
to the mechanical systems, respectively a non-
harmonic signal generating  sources of 
excitation which get in resonance with 
components of the system.  A good example is 
given by the non-harmonic signals such as 
earthquakes which produce damages to 
constructions or parts of constructions that have 
their own pulsation equal to harmonics of the 
earthquake.   
A non-harmonic periodic signal is the better 
defined in Fourier series, the more components 
of the series are identified, respectively the 
higher n gets. In reality, one also gets a 
limitation here: in calculating the coefficients 
of the Fourier series, and even in the series 
itself, one uses the harmonic functions 

   tntn 00 cos,sin   for which, the higher the 
value of n gets, the higher is the value of the 
parameter one needs to evaluate,  while in 
mathematics, it is well known that expressions 

 sin  ,  cos   are indeterminate.  
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By using a computer to calculate the series 
elements the non-determination situation 
described above is rapidly reached due to the 
way in which numbers are represented by the 
operating system or programming language, 
since numbers are only represented with a finite 
number of figures. The below examples clearly 
show this fact.  
 

 
Fig. 1 - Tooth of the saw signal 

 
Be a saw tooth signal which is analytically 

defined in the above,  having the period 0T 1  
second and its amplitude=1, fig. 1. In fig. 2, in 
the upper side we show the shape of the first 
eight harmonics and in the lower side the initial 
signal, reconstructed from ten harmonics.  

The value of the constant component 0a  is 
0,99401 and the amplitude of the tenth order 

harmonic 10A  is 0,01593. 
 

 
Fig. 2 - Reconstruction of ten harmonics 

 
By increasing the number of harmonics one 
would expect the signal reconstruction to be 
more accurate, maybe with the exception of 
interval limits, where the mathematical 
discontinuity is also more pronounced. By 
increasing the number of harmonics, like in fig. 
3 and 4, one notices a contradictory situation: 
reconstruction out of 300 harmonics is more 
precise than of 500, where large errors appear.  

 

 
a0=0,99401; A300=0,00105 

 Fig. 3 -  Recontruction out of  300 
harmonics 

 

 

Fig. 4 -  Reconstruction out of 500 
harmonics 

 

 
To find the source of this deviation one has to 
research the evolution of the harmonics 
amplitude in the studied cases, fig. 5.  
 

 
Fig. 5 - The amplitude of the first 600 

harmonics 

 
If for a number up to 300-400 harmonics their 
amplitude continually decreases at the same 
time with the increase of the given harmonics 
number of order, by continuing to increase  at 
number of harmonics, their amplitude begins to 

increase again up to the value 500A 0,497. 
Continuing to increase the number of 
harmonics, their amplitude decreases again 
followed once more by an increase for order 
high value.  This variation of the amplitude by 
the increase of the number of order, is not due 
to the structure of known relations of 
calculation but actually to the computer having 
to operate with hard conditioned relations. The 
cause of the deviations from figure 4, where the 
signal is reconstructed out of 500 harmonics, 
can be thus found in the particular way in which 
the digital computers operate with numbers 
which have a finite number of figures and, due 
to the truncation errors that appear when a large 
number of computations is being done,  one may 
end up experiencing big errors.  
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Subsequently, one can say of the Fourier series 
that: 
- It is a series made of harmonic functions with 
pulsations equal to multiples of the pulsation of 
the non-harmonic periodic signal whence it 
originates;  
- The harmonic functions which compose the 
Fourier series are real sources of excitation for 
the physical systems which have their own 
pulsations equal to one of the harmonic 
pulsation;  
- Each harmonics amplitude has a finite value, 
usually considered as continuously decreasing 
by the order of the harmonic, although there 
may occur situations where the decrease is not 
continued;  
- The harmonic functions come together in a 
discrete spectrum of pulsations contained in the 
base signal;  
- The characteristics of each spectrum’s 
harmonic, meaning amplitude and phase, are 
independent of the signal duration;  
- The Fourier series doesn’t show if, among the 
discrete harmonic components, it has others 
able to excite various other oscillating systems.  

 
3. COMPARISON WITH THE 

FOURIER TRANSFORM 
Let’s now compare the discrete spectral 
components given by the harmonics from the 
Fourier series with the continuous spectral 
components provided by the Fourier transform. 

For a signal described by the real function  tg , 
the Fourier transform leads to the 

function  jG  [4](pp. 14):  
 

   j tG j e g t dt


 



    (6) 

 

with j 1   which, after being submitted to 

the below transformation:  
 

     

   

   

G j cos t g t dt

j sin t g t dt

Re j Im









   

  

   




 (7) 

 
becomes a complex function with a real part 

 Re   and an imaginary one  Im  . The 

modulus of this function    S G j    is 

calculated by: 

     2 2S Re Im      (8) 

 
and one obtains a function dependent on the 
pulsation (or frequency), which is either named 
frequency characteristic should it refer to the 
behavior of one element of the signal’s 
propagation chain or spectral function should it 
refer to the spectral components of a signal 

 tg .  For any time function  tg ,  the values 
from (6)---(8) are to be found easily on the 
numerical way [2](pp. 123-124). Let’s consider 
the pure harmonic signal:  
 

   og t sin t   (9) 

 

which is fully known for  ot  20 . For 
the spectrum determined via the Fourier 
transform using (8), the integration will be done 
between variable limits, those being 0 and 

on 2  (n is a multiple of the period 02  ), 
in order to detect a possible influence of the 
signal’s duration upon its spectrum, duration 
which doesn’t appear in the Fourier series. The 
form below  of the spectral function is obtained  
on the  analytical calculation:  
 

  o
0 2 2

o

sin n

S 2

 
 
   

  
 (10) 

 

 
Fig.6 - Continuous spectrum of the harmonical 

pure signal 
 
Figure 6 shows the (10) function for n=4.  
Analyzing expression (10) one notices some 
interesting aspects: 

- In the point determined by 0 , on the 
abscissa,  the function has the value:  

 
 

o

o
0 0 2 2

oo

sin n
S 2 nlim



  
   

 

 

(11) 
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- The peak of the spectral function, meaning the 
maximum amplitude,  is not obtained for the 

pulsation 0  .  

- Amplitude S for 0  is increasing by the 

signal duration, so that for n   , S  .  
- Signal (9) has in fact infinite pulsations 
should it have a finite duration in time. 
The above shows that even a pure harmonic 
signal, which ought to have a frequency 
spectrum with a single pulsation, in reality has 
a very large spectrum, with many pulsations, 
the spectrum becoming narrow only for a single 

value 0  and only i f the signal is infinitely 

lasting, n . Since the signals have, in 
practice, a finite duration and are thus lasting 
for only several periods such as in the case of 
earthquakes or mechanical shocks, it means that 
their spectrum is actually very rich and they can 
excite an infinite number of devices which 
could have their own pulsation equal to some 
pulsation generated by the signal in its 
spectrum. Having a wide spectrum for short 
durations for a signal has one more 
inconvenient. Let’s consider a signal composed  
of two stationary harmonic components:  
 

     1 o1 1 2 o2 2g t A sin t A sin t       (12) 

 

 
n=1 

 
n=50 

Fig. 7 - The spectrum of a signal 
composed of two harmonic signals with 

near pulsations 
 

where we can use for example: 

1 2 o1 02A 1, A 1, 100 , 110 ,         

1 2 0     and which is lasting initially for 
only one period, and then for 50 periods with 

the value of o12  .   
The spectrum from figure 7 shows that for the 
short length signal the spectrum’s width is so 
big that it doesn’t allow anymore the 
identification of its components’ pulsations, the 
bandwidth exceeds the difference between the 

two pulsations 01 02,  . If the signal is lasting 
more, for example 50 periods, the spectral 
bandwidths get narrow and they show very 
clearly the existence of the two spectral 
components.  

 
4. CONCLUSIONS 

The elements of the Fourier series represent the 
spectral components of a given signal, only if 
the signal is lasting for very long time. For 
signals with a short duration of time the larger 
the spectrum the shorter the duration is. This 
explains the multitude of systems with various 
own pulsations excited for very short periods by 
short duration signals such as earthquakes 
(mechanical systems) or radio electrical 
interferences produced by the engines ignition. 
That is why earthquakes destroy walls, pillars, 
consoles or chimneys with various dimensions 
and shapes and radio electrical interferences are 
detected up to frequencies of hundreds MHz.  
Received on (month day, year) 
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