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AND IMPLICIT KNOWLEDGE INTEGRATION 
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Abstract: In this paper we propose a unified approach for integrating implicit and 
explicit knowledge in neurosymbolic systems as a combination of neural and neuro-
fuzzy modules. In the developed hybrid system, training data set is used for building 
neuro-fuzzy modules, and represents implicit domain knowledge. The explicit domain 
knowledge on the other hand is represented by fuzzy rules, which are directly mapped 
into equivalent neural structures. The aim of this approach is to improve the abilities of 
modular neural structures, which are based on incomplete learning data sets, since the 
knowledge acquired from human experts is taken into account for adapting the general 
neural architecture. Three methods to combine the explicit and implicit knowledge 
modules are proposed. 
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1. INTRODUCTION 

In recent years, the hybrid neural systems have drawn 
increasing research interest. This approach has been 
successfully used in various areas, such as 
speech/natural language understanding, robotics, 
medical diagnosis, fault diagnosis of industrial 
equipment, and financial applications (Becraft et al., 
1991; Lin and Lee, 1991; Kosko, 1992; Rocha, 1992; 
Takagi, 1994; Sima and Cervenka, 1997; Palade, 1999; 
Wermter and Sun, 2000). The reason for studying 
hybrid neural systems is based on successful 
applications of subsymbolic knowledge-based 
systems, particularly the neuro-fuzzy networks, as 
well as on the advantages of the symbolic 
knowledge-based systems. In the hybrid systems, 
connectionist tools can be interpreted as hardware, 
and fuzzy logic as software implementation of human 
reasoning. The modular structure of connectionist 
implementations of explicit and implicit knowledge 
can be interpreted as a homogenous inductive and 
deductive learning and reasoning system. 

The fundamental concepts and methods used in our 
approach are described subsequently: the formalism 
of the neural fuzzy model MAPI (Rocha 1991; 1992). 
The context of combining implicit and explicit 
knowledge in a connectionist implementation is 
introduced, and three specific methods are presented, 
based on fuzzy operators, supervised or unsupervised 
gating networks. Additionally, the steps required in 
the process of building the proposed system called 
NEIKES (Neural Explicit and Implicit Knowledge-
based Expert System) are described. 

The implicit knowledge is defined as a connectionist 
module-based representation of learning data. The 
explicit knowledge module of the hybrid system is 
implemented as a special connectionist structure 
using hybrid fuzzy neural networks. This kind of 
implementation is proposed to adjust the 
performances of implicit knowledge modules. The 
paper is ended with some conclusions on the subject 
of neuro-fuzzy approach. 
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2. STATE OF THE ART IN NEUROSYMBOLIC 
INTEGRATION 

The last ten years have produced an explosion in the 
amount of research on both, symbolic and 
connectionist fields. Symbolic processing is 
considered as a traditional way in Artificial 
Intelligence. In connectionist systems, unlike 
symbolic models, learning plays a central role. The 
directions of research being done under the banner of 
these approaches explore both, high-level 
connectionism (applied to natural language 
processing or commonsense reasoning (Sun, 1991, 
1994) and hybrid systems (as engineering oriented 
points of view (Khosla and Dillon, 1997; Pal and Mitra, 
1992). Connectionist models are powerful tools to 
process knowledge, so they have been used to build 
connectionist intelligent systems, mainly for 
perceptual tasks, where discovering explicit rules 
does not seem either natural, or direct. Like human 
beings, the connectionist models rely on learning 
low-level tasks. Learning by example is not a general 
solution: it is known that many situations are solved 
by intelligent entities using explicit rules. 

The two approaches can be used in complementary 
way. This is the premise of the hybrid intelligent 
systems, which combine connectionist and symbolic 
features. In such systems, the learner first inserts 
symbolic information of some sort into a neural 
network: the learner must use prior knowledge in 
order to perform well. Once the domain knowledge is 
put in a neural representation, training examples are 
used to refine the initial knowledge. Finally, it 
process the output for a given instance and, using 
some specific methods (Benitez et al., 1996; 1997)) 
(Neagu and Palade, 2000; Omlin and Giles, 1996; 
Palade, 1999), extracts symbolic information from 
the trained network in order to give some 
explanations on the computed output and improve 
understanding of the refined connectionist 
knowledge. Building hybrid intelligent systems 
requires an exploration of all these approaches. 

The most important effort in such situation is focused 
to the homogenous implementation of all these 
methods into connectionist structures, in order to use 
their capabilities to well perform and provide 
accurate conclusions using often incomplete and 
noisy data. In this paper, some approaches to 
represent, in a neural manner, external fuzzy rules, 
explicitly acquired from human experts, are 
proposed. These rules are combined with trained 
neural structures, built using data sets of the same 
application domain, in order to improve accuracy of 
the output. Complex tasks may give raise to local 
minima; subsequently the “learning by example” 
paradigm is useful mostly in simple tasks. Our 
proposed answer to this problem is to combine 
different connectionist modules solving various 
subtasks of the main problem. 

The connectionist integration of explicit knowledge 
and learning by example appears to be a natural 
solution of developing connectionist intelligent 
systems. The problem to be solved is the uniformity 
of integration. In order to encourage modularization, 
explicit and implicit rules should be represented in a 
neural manner using fuzzy neural networks (FNN, 
(Buckley and Hayashi, 1995; Fuller, 1999), hybrid neural 
networks (HNN, Buckley and Hayashi, 1995; Fuller, 
1999), and, in a particular approach, standard neural 
networks (MLP - multilayer perceptron-based 
structures (Rumelhart, and McClelland, 1986). While 
fuzzy logic provides the inference mechanism under 
cognitive uncertainty, neural networks offer the 
advantages of learning, adaptation, fault-tolerance, 
parallelism and generalization (Fuller, 1999). The 
computational process involved in implicit and 
explicit knowledge acquisition and representation is 
described next. First definition of a “fuzzy neuron” is 
provided, based on the understanding of biological 
neuronal structure, followed by learning mechanisms 
(for implicit knowledge representation as combined 
standard and/or fuzzy neural networks), respective 
fuzzy rule mapping mechanisms (for explicit 
knowledge representation as hybrid neural networks). 
This leads to the three steps in a neural computational 
process (Fuller, 1999): development of fuzzy neural 
models, models of synaptic connections, which 
incorporate fuzziness into neural network, and 
application of learning, respective mapping 
algorithms to adjust the synaptic weights. The system 
taken into consideration in the next sections is a 
multi-input single-output fuzzy system (MISO). 

3. KNOWLEDGE REPRESENTATION 

The MAPI neuron, proposed by Rocha (Rocha, 1991; 
Pedrycz and Rocha, 1993; Rocha, 1992), is a useful tool 
to add another level of programmability in fuzzy 
reasoning. The combinations of generalized fuzzy 
computation, the MAPI model and distributed 
architecture proposed in the next sections, are used as 
a powerful neurosymbolic processing tool. 

3.1. The Implicit Knowledge Module 

We define the implicit knowledge as the knowledge 
represented by neural networks, which are created 
and adapted by a learning algorithm. The 
representation of implicit knowledge is based on the 
numerical weights of the connections between 
neurons. Assuring to integrate implicit knowledge 
and explicit given fuzzy rules into the same global 
network, the trained neural networks are hybrid/fuzzy 
neural networks. A classical MLP would be used to 
improve the behavior of the implicit knowledge 
modules (IKMs), as an alternative way to extract 
fuzzy rules (Benitez et al., 1996; 1997; Neagu and 
Palade, 1999) from training data sets, and to compare 
the overall performance of the neurosymbolic system 
with common approaches. 
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Fig.1. Implicit Knowledge Module implemented as FNN2/HNN. 

The IKM is implemented as a multilayered neural 
structure based on an input layer establishing the 
inputs to perform the membership degrees of the 
current values, a fully connected three-layered FNN2 
(Fuller, 1999), and a defuzzification layer (figure. 1). 

The FNN of type 2 (FNN2) implements IF-THEN 
fuzzy rules, and is characterized by fuzzy inputs and 
outputs, and crisp weights. The input nodes of the 
FNN2 are proposed to be MAPI neurons, 
parameterized such as to implement given 
membership functions of the term set of each 
linguistic input. As a generalized approach, in (Jang 
and Sun, 1993; Lin and Lee, 1991) the authors 
proposed similar structures in which the objective is 
to approximate the shape of membership functions. 
The objective of the FNN2 as IKM is to learn the 
fuzzy rules and to implement the dependences 
between the linguistic output and the fuzzified inputs. 

3.2. The Explicit Knowledge Module 

We define the explicit knowledge as a knowledge 
base represented by neural networks, which are 
computationally identical to a fuzzy rules set, and are 
created by mapping the given fuzzy rules into hybrid 
neural networks. The fuzzy rule set is described as a 
discrete fuzzy rule-based system DFRBS (Buckley and 
Hayashi, 1995). The intrinsic representation of explicit 
knowledge is based on fuzzy neurons in a MAPI 
implementation. The numerical weights 
corresponding to the connections between neurons 
are computed using Combine Rules First Method: 
(Buckley and Hayashi, 1995), or Fire Each Rule Method 
(Buckley and Hayashi, 1995; Fuller, 1999). 

4. IMPLICIT AND EXPLICIT KNOWLEDGE 
INTEGRATION 

The introduction of the modular networks into fuzzy 
systems provides new insights into the integration of 
explicit and implicit knowledge in a connectionist 
representation. The modular network is a 
connectionist architecture that allows each module to 
exhibit its own “opinion” about the entries, in order 
to classify or predict the output. Thus, a modular 
network offers several advantages over a single 
neural network in terms of learning speed, 
generalization and representation capabilities 
(Haykin, 1994; Jacobs et al., 1991; Langari, 1993). 

Hence, the idea to represent explicit and implicit 
knowledge in a connectionist manner is based on the 
concept of modularity (Haykin, 1994; Jacobs et al., 
1991). Modularity may be viewed as a manifestation 
of the “divide and conquer” principle, which let us 
solve complex computational tasks by dividing the 
problem into simpler subtasks and then combining 
their individual solutions. We used the modular 
network concept to integrate explicit and implicit 
knowledge formally defined as follows (a definition 
adapted from (Hashem, 1997): A neural network is 
said to be modular if the computation performed by 
the network can be decomposed into two or more 
modules that operate on inputs of the main problem 
without communicating with each other. The outputs 
of the modules are mediated by an integrating unit 
that is not permitted to feed information back to the 
modules. In particular, the integrating unit decides 
how the outputs of the modules should be combined 
to form the final output of the system. 
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Fig.2. Integration of explicit and implicit knowledge modules in the global network according to FEM strategy. 

 

The main approaches of learning paradigms are 
involved in a modular network (Hashem, 1997): 
unsupervised learning allows modules to compete 
with each other to produce the output, while 
supervised learning is using an external teacher that 
supplies the desired target patterns to train different 
modules. 

The global network (GN) of our approach is a 
modular structure including two different “points of 
view” about the same problem: the implicit 
knowledge, implemented by the trained neuro-fuzzy 
network, and the explicit knowledge, represented by 
a collection of special neural networks equivalent to 
some rules proposed by human experts (Neagu and 
Palade, 1999). First module (IKM) is responsible for 
generalization, and processing noisy cases, using 
implicit knowledge, achieved through learning from 
examples. The second one (EKM) is developed in a 
top-down manner, using the methods of mapping 
available explicit rules in hybrid neural structures. 

Architectures based on cooperating connectionist 
modules are proposed to solve integration of explicit 
and implicit knowledge. In this section, we propose 
three strategies to combine IKM and EKM in order to 
build a global hybrid system: Fire Each Module 
(FEM), Unsupervised-trained Gating Network 
(UGN), and Supervised-trained Gating Network 
(SGN). The first strategy is an adapted Fire Each 
Rule method (Buckley and Hayashi, 1995) in the 
context of modular networks. The second strategy 
proposed a competitive-based aggregation of the 
EKM and IKM outputs, while the third strategy uses 
a supervised trained layer to process the overall 
output of the modules. 

4.1. Fire Each Module Strategy 

The proposed FEM strategy is the simplest mode to 
integrate IKM and EKM with fuzzy output. A 
general approach form of this modular structure is 
proposed in (Neagu and Palade, 1999) and shown in 
(figure 2). After off-line training phase applied to 
implicit neuro-fuzzy module, the general output of 
the system is composed as a T-conorm (Zadeh, 1983) 
of fuzzy outputs of each module: the four-layered 
IKM structure for global network and the EKM 

(implemented using combine rules first or fire each 
rule method). The system is viewed as equivalent to a 
set of given fuzzy rules: the overall output is 
computed using firing (implicit and explicit) rules 
first method (Buckley and Hayashi, 1995; Fuller, 1999). 
The method of combining the specific membership 
degrees provided by both, IKM structure (xi values, 
i=1,2,...,m), and EKM structure (yi values, 
i=1,2,...,m), would be done component wise so let: 

(1) y'i=T-conorm(xi,yi), i=1,2,...,m, 

for some aggregating  operator, in particular the max 
fuzzy operator. In the hidden aggregative layer (AL), 
all the weights are set to one, and the neurons 
aggregate the specific computed membership degrees 
xi and yi as implicit, respective explicit opinion about 
the current output to be described with Bi

-th fuzzy 
term (where the terms set describing the output is 
B={B1,...,Bi,...,Bm}). Practically, the inputs for the 
MAPI deffuzifier describe the shape of the fuzzy 
output. The final neuron is a MAPI device, which 
computes the crisp value of the output, using, for 
example, the center of gravity method. 

The methodology proposed to build the global 
network architecture is based on obtaining fuzzy 
rules, describing the system, which are obtained from 
a human expert or from a set of examples of its 
behavior. The methodology consists of: 

1. Identification of input and output linguistic 
variables. The variables are represented by fuzzy sets 
that are mapped in MAPI units. 

2. The IKM is built and train as a five-layered 
fuzzy neural network (the off-line training structure 
of IKM). 

3. From the hidden part of the IKM, the most 
relevant rules are extracted, using Relative Rule 
Strength method, Effect Measure Method, Causal 
Index Method. 

4. We construct a set of possible explicit rules in a 
given problem with the help of a human expert, using 
both, external rules and those already extracted at 
step 3, as the most voted and trusty dependencies 
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between inputs and output. All these rules are 
mapped into EKM. Some explicit rules could have 
just a part of identified inputs in the rule premise, 
represented as active neurons, while the rest of the 
input neurons will be set as inactive. 

5. The four-layered IKM, and the EKM structures 
(without the deffuzifier MAPI final neuron) are 
embedded into the architecture described in  figure 2, 
for which the combining hidden layer AL and the 
MAPI-based deffuzifier are adapted. 

6. After an incremental loop sequence based on 
steps 2 to 5 (which could be used as a knowledge 
acquisition procedure), the global network is ready to 
be used as a classifier or prediction tool. 

The incremental loop sequence consisting of steps 2 
to 5 could be refined on the basis of combining 
already given fuzzy rules and training data set as 
follows. IKM is designed by mapping some external 
fuzzy rules in the hidden HNN, which further 
learning with training samples is based on. This way 
the knowledge is kept at the sub-symbolic level. The 
main goal of the approach is not just to reduce 
training period, but also to improve the generalization 
abilities of the network. The disadvantages consist in 
both, redistribution of symbolic a priori knowledge 
(or at least building haloes of initial rules), and 
necessity of a new refinement of final incorporated 
knowledge in the resulted network. This strategy 
follows the variations of concept support techniques 
(Prem et al., 1993; Wermter and Sun, 2000), 
parameterized by the method used to insert a priori 
knowledge: 

(a) Inserting some rules describing a subset of cases 
of desired input-output mapping, and learning the 
training samples (inserted explicit rules play the role 
of a complement of the training sets in supplying 
knowledge to the network). 

(b) Inserting the symbolic concepts believed to be 
relevant for the problem solution and training by 
supporting the relevant concepts. 

(c) Inserting explicit rules as in (b), followed by a 
training phase, in which the used hidden units are 
different from those designed in first phase. 

4.2. Unsupervised-trained Gating Network Strategy 

The proposed structure is based on the modular 
networks paradigm, by considering that the basic 
configuration consists of two general types of 
networks: expert networks (implemented by EKM 
and neuro-fuzzy IKM) and a gating network. A 
classical modular network considers expert networks 
competing to learn the training patterns, and the 
gating network mediating the competition (Haykin, 
1994; Jacobs et al., 1991; Langari, 1993). The 
proposed modular architecture uses neural explicit 
and implicit knowledge modules, and the gating 
network for voting the best combination of fuzzy 
terms computed by expert networks, in order to 
describe the linguistic output (figure 3). 

The EKM and IKM structures are developed and, 
respectively, trained. The gating network is also 
trained, with the constrain to have as many output 
neurons as there are fuzzy terms chosen to describe 
the linguistic variable Y as the output of global 
network. The specific membership degrees provided 
by both, IKM structure (xi values, i=1,2,...,m), and 
EKM structure (yi values, i=1,2,...,m), are aggregated 
according to the equation (1) by MAPI-based 
neurons implementing MAX T-conorm (aggregation 
layer AL). The goal of the learning algorithm for the 
gating network is to model the distribution of the 
membership degrees computed by EKM and IKM. 

The gating network consists of a single layer of m 
output neurons (Hashem, 1997), each one having m 
inputs. The activation function of its output neurons 
is a softmax transformation (Bridle, 1990). The 
process of gating network training considers that, for 
each vector [x'1, ... , x'm] processed by AL, the 
activation gi of the ith output neuron is related to the 
weighted sum of the inputs applied to that neuron. 
Consequently, the activations of the output neurons 
in gating network are nonnegative and sum to one: 

Fig.3. Integration of explicit and implicit modules using an unsupervised-trained gating network (UGN strategy). 
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(2) 10 ≤≤ ig  and ∑ =
=

m

i
ig

1
1 . 

The additional advantage gained by using the gating 
network is the implicit defuzzification of the overall 
output of the system: 

Proposition 2: Let [x1, ... , xp] be the current input of 
the system and [y'1, ... , y'm] be the current output of 
the aggregation layer and let consider the gating 
network already trained using the unsupervised 
compet algorithm (Hagan and Beale, 1996). Then the 
overall output y of the UGN system, computed by a 
softmax transformation is a crisp value representing 
the defuzzified output of the model. 

Proof: Let’s consider that the output of the system is 
computed in respect with the Sugeno model (the 
consequent part of each rule is described by a linear 
regression model, (Sugeno and Kang, 1988; Takagi, 
1994): 

(3) Ri: IF X1 is Ai1 AND X2 is Ai2 AND ... AND Xp is 

Aip THEN ∑=
=

p

j
jiji xby

1
' , 

where Ai1, Ai2,..., Aip are fuzzy sets having associated 
matching functions µAi1, µAi2,..., µAip, bij are real-
valued parameters, y'i is the local output of the model 
due to rule Ri, i=1,2,...,m. The total output of the 
Sugeno model is a crisp value defined by the 
weighted average: 

(4) 
∑

∑=
=

=
m
i i

m
i ii

h
yh

y
1

1 '
. 

The weight hi implies the overall truth value of the 
premise of rule Ri for current input, and is calculated 
as: 

(5) hi=(µAi1(x1)^µAi2(x2) ^...^µAip(xp), 

where ^ is a conjunctive T-norm. The output y 
described in equation (31) is a crisp value. 

Let’s now consider the input vector [x1, ... , xp] 
applied to the system described in figure 3. Then, the 
output of the entire architecture is: 

(6) ∑= =
m
i ii ygy 1 ' . 

The expressions of the current output of Sugeno 
model and proposed structure are similar: each rule in 
the Sugeno model could be considered an explicit 
rule into EKM, or a particular way involving one 

hidden neuron through the IKM, while the relative 
weight of the ith neuron in the gating network is: 

(7) 
∑

=
=

m
i i

i

h
h

gi
1

. 

In essence, the gating network, proposed to combine 
the outputs of the aggregating layer, acts as a special 
defuzzifier. 

The methodology proposed to build the global 
network architecture is partially similar to the FEM 
methodology, and consists of: 

1. Steps 1 to 4 are similar to those described for 
the FEM strategy. 

2. The four-layered IKM and the EKM already 
described structures (without the deffuzifier 
MAPI final neuron) are embedded into the 
architecture described in the figure 3, for which 
the combining hidden layer AL and the 
deffuzifier MAPI-based unit are adapted. 

3. The gating network is trained (compet 
algorithm) using the AL outputs computed for the 
training data set of the system. 

4. After an incremental loop sequence based on 
the first step (which could be considered as a 
knowledge acquisition procedure), the global 
network is ready to be used as a classifier or 
prediction tool: the final crisp value of the output 
is computed using the gating network based on 
the softmax transformation, as described in 
equation (6). 

4.3. Supervised-trained Gating Network Strategy 

The proposed structure contains expert networks 
represented by a defined number of EKMs and IKMs 
solving various sub-problems of the main task, and a 
supervised trained network mediating their outputs’ 
combination. EKMs represent explicit rules, 
identified by expert, or refined from a previous 
knowledge acquisition phase; IKM structures are 
useful in the overall architecture, because of their 
generalization and processing noisy data abilities. 

After training, different expert networks compute 
different functions, each of them mapping different 
regions of the input space. Each defuzzified output of 
expert networks is considered an input for the final 
layer. The supervised training process of the final 
network assures, in fact, a weighted aggregation of 
expert networks’ outputs with respect to their 
specialization (figure 4). 
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Fig.4. Integration of explicit and implicit modules using a supervised-trained gating network (SGN strategy). 

 

The methodology proposed to build the global 
network architecture using a supervised-trained 
gating module consists of the following steps: 

1. Identification of input and output linguistic 
variables. The variables are represented by fuzzy 
sets that are mapped in MAPI units. The IKM 
modules are represented as HNN and/or MLP 
networks. We build and train each IKM as a five-
layered fuzzy neural network or as a MLP-based 
structure, in order to assure for each one a crisp 
specific output. 

2. The most relevant rules are extracted from 
the IKM structures, using Relative Rule Strength 
method, Effect Measure Method or Causal Index 
Method in the case of HNN implementation, 
respectively using interactive fuzzy operators in 
the case of MLP implementation. 

3. We construct a set of possible explicit rules 
in the given problem with the help of a human 
expert, using both, external rules and those 
already extracted at step 3, as the most voted and 
trusty dependencies between inputs and output. 
We map each rule into a specific EKM structure. 
A MAPI-based defuzzifier as a final layer 
completes all the EKM structures in order to 
assure a crisp output for each module. 

4. The IKM and EKM structures are embedded 
into the global architecture (figure 4). 

5. The gating network is supervised trained 
using the EKM and IKM computed outputs, such 
as the overall network is a combination of expert 
modules. 

6. After an incremental loop sequence based on 
first four steps (which can be considered as a 
knowledge acquisition procedure), the global 
network is ready to be used as a classifier or 
prediction tool. The final crisp value of the output 
is computed using the gating network which acts 
as a classifier of the best combination of each 

expert network’s behavior, describing the overall 
output for a given vector of input data. 

5. CONCLUSIONS AND FUTURE WORK 

The proposed structures and methods argue the use of 
connectionist systems in symbolic processing. Since 
the presented EKMs were demonstrated to be 
identical to Discrete Fuzzy Rule-based Systems 
(Rocha, 1992; Buckley and Hayashi, 1995), the 
homogenous integration of explicit rules and training 
data sets permits better cover of the problem domain. 
In that case, the constraint of the size of neural 
networks is solved by modularity paradigm. EKMs 
represent explicit rules identified by expert or refined 
from IKM structures; IKMs are useful especially for 
such complex problems described by (noisy) data 
sets. 

The EKM and IKM combination encourages compact 
solutions for problems described by both, data sets 
distributed in compact domains in the hyperspace, 
and isolated data, situated in intersection of compact 
sub-domains or inhomogeneous intervals. After 
training, different expert networks compute different 
functions mapping different regions of the input 
space. 

The different sources of the information explicitly 
and/or implicitly integrated in the presented modules 
exhibit the problem of knowledge redundancy in the 
final structure. The proposed methods, based on 
explicit and implicit module integration, can operate 
with redundant knowledge spread in both ways of 
representation. This redundancy should be clearly 
minimized. The method to implement redundancy 
minimization is based on selecting specific data sets 
from training collection, which are not suitable to 
verify the implemented rules. The resulted training 
data sets describe such domains in the hyperspace, 
which are not covered by the explicit rules. The main 
disadvantage is that the IKMs are able to generalize 
just in their domain. 
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