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Abstract: The clustering algorithms based on potential functions are capable of 
clustering a set of data, making no implicit assumptions on the cluster shapes and 
without knowing in advance the number of clusters. They are similarity-based type 
clustering algorithms and do not use any prototype vectors of the clusters. In this 
paper, some properties of these algorithms are studied: points arrangement tendency, 
constant potential surface, cluster shapes and robustness to noise. 
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1.2 Optimal clustering and validity indices 
 
In general, optimal clustering means partitioning a 
data set into a set of clusters, which minimizes 
distances within and maximizes distances between 
clusters. However, within- and between- cluster 
distances can be defined in several ways. In Table 1, 
within-cluster distances are shown, for a cluster Qk. 
 

Table 1 Within-cluster distances d(Qk) 
 

Within-cluster distance d(Qk) 
 
 Average distance 

 
 
 

 Nearest neighbor distance 
 
 
 

 Centroid distance 
 

 

1. INTRODUCTION 
  

1.1 Clustering algorithms 
 
A data set clustering can be done in two main ways: 
hierarchical and partitive approaches. The 
hierarchical methods include agglomerative and 
divisive algorithms, corresponding to bottom-up and 
top-down strategies to build a hierarchical clustering 
tree, which can be used for interpretation of the data 
structure (Vesanto and Alhoniemi, 2000). 
 
Partitive clustering algorithms divide a data set into a 
number of clusters according to a generic inter-point 
measure of similarity or dissimilarity, trying to 
obtain an optimum value of a performance criterion.  
 
The most commonly used classes of partitive 
algorithms are similarity-based methods. These 
methods include algorithms based on distance of a 
point to the prototype vectors, such as k-means and 
ISODATA and potential function-based algorithms.  
 
The algorithms based on potential function use a 
measure of similarity created with a function 
between two points of the data set, called potential 
function, which is a non-increasing function with the 
distance between the points. 

 

 
Nk represents the number of vectors in cluster Qk. 
Also, xi, xj ∈  Qk, i ≠ j and ck is the center of gravity 
of Qk: 
 
 
In Table 2, distances between clusters are shown, for 
two clusters Qi and Qk. 
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Table 2 Between-cluster distances D(Qi, Qk) 
 

Between-cluster distance D(Qi, Qk) 

   Single linkage  

   Complete linkage  
 
   Average linkage 

 
 

   Centroid linkage  

 
Ni and Nk represent the number of vectors in clusters 
Qi and Qk, xi ∈  Qi, xk ∈  Qk. 
 
To select the best one from many partitions, a 
validity index can be used to evaluate them. Different 
validity indices can be defined (Bezdek, 1998), 
depending on which distances are considered. 
 
For example, the Davies-Bouldin index uses dC as 
within-cluster distance and DC as between-cluster 
distance. In this case, the best clustering minimizes 
the expression: 
 
 
 
where C is the number of clusters. This index is 
suitable for evaluation of partitions with spherical 
clusters, the best partition being indicated by the 
index with the minimum value. 
 
 

2. POTENTIAL FUNCTION-BASED 
ALGORITHMS 

 
2.1 Potential functions 
 
Consider a data set S of N input vectors into a d-
dimensional space: 
 
 
A potential function K(xi,xk) associated with the 
vector xi∈S defines a positive value, called potential 
of the point xi to the reference point xk∈ℜ d . The 
potential depends on distance between the points xi
and xk, denoted dik = d(xi,xk) and is a non-increasing 
function with dik . 
 
Two potential functions are commonly used : 
 
 
 
 
where parameter α controls the slope of the function.  
The potential values belong to range (0, 1] and the 
maximum is obtained for dik = 0. The functions are 
smoothly if parameter α has small values.  
 
The function variations with dik for different values 
of α are illustrated in Figure 1. The potential 
functions K2 are represented with continuous lines 
and K1 are represented with dotted lines. 

  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Potential functions for three values of α 
 
In Figure 1, for the same α value, the two potential 
functions have similar values if distances between 
the points are small. 
 
The distance dik can be the general Minkovski 
distance: 
 
 
where for p=2 Euclidean distance is obtained, which 
is considered in this paper. 
 
A constant potential value to a reference point xk∈ℜ d

is obtained by the potential function K(xi,xk) 
associated with the points xi∈ℜ d for which the 
distance dik is constant. The points xi generate a 
constant potential surface, whose shape depends on 
distance definition. For Euclidean distance, the 
constant potential surface has spherical shape around 
the reference point xk∈  ℜ d.  
 
The parameter α also affects the constant potential 
surface, different α values generating different 
potential surfaces, but their shapes are similar around 
the reference point. If α value increases, the potential 
surface is moving nearer to the reference point. 
 
Similar, a potential value of a point xi to a group of 
reference points M={xk1, xk2,..., xkm} can be defined 
as the average of the potential values of the point xi
to all reference points xkj:  
 
 

In this case, a constant potential value to the group M 
generates a potential surface, which also depends on 
distance definition. The constant potential surfaces 
surround the reference points, but their shapes are 
affected by α-values and reference point positions. 
 
For example, two reference points xk1, xk2∈  ℜ 2 and a 
constant potential value K = 0.5 are considered. The 
reference points are represented with ‘+’ in Figure 2. 
 
For every reference point, three different constant 
potential surfaces are generated with potential 
function K2(xi,xk), corresponding to K and three α-
values: 2, 5 and 10. 
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Fig. 2. Constant potential surfaces in ℜ 2 space  
 
In Figure 2, the constant potential surfaces to a single 
reference point have spherical shapes around the 
point, being represented with dotted lines. The big 
circle represent the first potential surface, 
corresponding to α=2. 
 
The potential surfaces generated by the constant 
potential value K to the reference group {xk1, xk2} are 
represented with continuous lines in Figure 2, 
corresponding to the same α-values. They surround 
the group of reference points, but the shapes depend 
on α-values and reference point positions. For small 
α-values, the shape tends to be spherical. 
 
 
2.2 The algorithm stages 
 
A potential function-based algorithm (PFBA) uses a 
measure of similarity, which characterizes the 
membership of a point to a group of points, based on 
a potential function (Dorofeyuk, 1966).   
 
Consider a group of points M from S, M ⊂  S and a 
point xi∈S, xi∉ M. A similarity measure of xi to M 
can be defined as the average Ai of the potential 
values of the point xi to all points of the group M: 
 
 
 
where NM represents the number of points in M. 
 
Using this measure of similarity, the points of the 
data set S can be arranged in a certain order, starting 
from a specified point, pursuant to the following rule: 
• select the starting point, let it be x1∈S, form the 
first group M1={x1} and denote A1=1, which 
represents the maximum potential value; 
• find in S/M1 the point x2 with the maximum 
measure of similarity to M1 in the meaning of (8), 
which is: 
 
 
 
Form a new group M2 = {M1, x2} = {x1, x2}; 

 • repeat the previous step until all the points of the 
data set S are assigned, by finding the points xk with 
maximum measure of similarity to M k-1: 
 
 
 
Form the groups M k={M k-1, xk}. 
 
In this way, the set S is ordered, S={x1, x2,..., xN} and 
a new series is obtained: A1, A2,...., AN. 
 
All potential function-based algorithms compute the 
new series A1,..., AN, which contains the necessary 
information for clustering. The analysis of this series 
differs from algorithm to algorithm. 
 
For example, the algorithm considered in this paper 
(Bumbaru, 1970) has the following stages:  
- select the starting point; 
- arrange the points of the data set S, using the rule 
described above; 
- compute the ratios R1,..., RN, where 
 

 
 
- compute the mean value mR and the standard 
deviation σR of the ratios Rk; 
- consider a threshold p = r⋅c⋅σR , where r = 1...20 and 
c∈ [0.3, 1];  
- the clustering decision is made comparing the 
difference Rk-Rk-1 with the threshold and a new 
cluster begin if Rk-Rk-1 > p. Thus, a new partition is 
obtained; 
- compute other partitions for different threshold 
values, by increasing r, until p > Rk-Rk-1 for all 
differences. 
 
The clustering result is considered the partition, 
which remains unchanged for the greatest number of 
r-values. 
 

3. PROPERTIES OF PFBA 
 
3.1 Points arrangement tendency 
 
Arrangement of the points in the ordered data set S 
depends on selections of first point, potential 
function and parameter α and the tendency is to 
order the points in successive layers around the first 
points. Also, these selections affect the values of 
series Ak and Rk and can affect the clustering 
performance. 
 
To illustrate the influence of the first point selection 
and the ordering tendency of the points, a data set is
clustered starting from two different points.  
 
Consider the data set I, with two spherical and well-
separated clusters, as shown in Figure 3. The clusters 
have 40 and respectively 100 points, which are 
denoted x1, ...x140, marked with ‘+’ in the figure. 
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pointFirst 

pointFirst 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Data set I, with two spherical clusters 
 
Running the clustering algorithm twice, with the first 
point into the small cluster and then into the big 
cluster, the arrangements of the data set points are 
different and are illustrated in Figures 4 and 5. The 
potential function is K1 and the parameter α=10. 
 
In these figures, the points are marked with ‘+’ and 
the start point is marked distinctly. In addition, lines 
are drawn between every two consecutive points in 
the ordered data set.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The ordered data set, starting from x1 
 
In Figure 4, the arrangement starts with the first point 
of the data set x1, which is into the small cluster and 
in Figure 5 the start point is x120, which is into the big 
cluster.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The ordered data set, starting from x120 
 
It can be observed that the points are ordered in 
successive layers around the first ordered points. 
 

 3.2 The series Ak and Rk 
 
The series Ak has decreasing tendency, representing 
the average of the potential values of a point xi to all 
points placed before it in the ordered data set. Big 
variations between adjacent elements of Ak indicate 
the transition into another cluster. 
 
The ratio Rk can be considered a random variable, 
with standard deviation σR and mean value mR close 
to 1 for any data set containing sufficiently great 
number of points and for a large range of parameter 
α. The transition from one cluster into another is 
indicated by big values of Rk. 
 
The series Ak and Rk computed for the situations 
above are illustrated in Figures 6 and 7. The first row 
represents the series Ak and the second row 
represents the series Rk.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. The series Ak and Rk with the start point x1 
 
In Rk window, the mean value mR is represented with 
continuous line and the mR ± σR values are illustrated 
with dotted lines.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The series Ak and Rk with the start point x120 
 
The series values are different and the maximum 
variations of them indicate the cluster separation, 
which is evident. However, the first separation is 
bigger and the arrangement is more appropriate. 
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3.3 Constant potential surface 
 
The constant potential surface to a group of points M 
depends on potential function and parameter α and 
tends to take similar shape as the one of the cluster 
when α increases, even for more complex cluster.  
 
The influence of α values on constant potential 
surface is illustrated for two different values of α, 
using the potential function K2. Increasing α value, 
the constant potential surface will be closely to the 
cluster points and the new cluster will be oblong. 
Thus, the parameter α can be used to characterize the 
shape of the clusters: more compact or oblong. 
 
Consider a complex cluster M with 199 points and a 
new point x200, which has the measure of similarity 
to M denoted A200. The value of the constant 
potential surface was chosen equal to A200, which is 
useful to compare new additional points with x200. 
 
For α=25, the constant potential value is A200=0.055 
and the constant potential surface is illustrated with 
gray color in Figure 8. The points of the cluster are 
marked with ‘+’ and the last point placed on the 
constant potential surface is marked with ‘o’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Constant potential surface for α = 25 
 
Similar, for α = 80, the constant potential value is 
A200 = 0.029 and the constant potential surface is 
illustrated with gray color in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Constant potential surface for α = 80  
 
Additional points placed outer potential surface have 
measure of similarity to M smaller than A200 and the 
points are ordered after x200. 

 By contrary, any additional point placed into 
potential surface is ordered before x200.  
 
For example, in Figures 8 and 9, the point at the 
(0.45, 0.45) coordinates is marked with ‘.’. This point 
is ordered before x200 if α = 25 and is ordered after 
x200 if α = 80. 
 
 
3.4 Cluster shapes 
 
The potential function-based algorithms work well 
for complex cluster shapes. In contrast, the 
algorithms based on distance to the prototype vectors 
are sensitive to the cluster shapes and give good 
results just for spherical well-separated clusters.  
 
Two cases are considered: elongated and irregular 
shapes of the clusters. In the first case, the data set II 
with two elongated clusters is chosen. The clusters 
have 50 and respectively 100 points and their main 
directions are parallel. Using PFBA, the clusters are 
well identified, as shown in Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Clustering elongated shapes with PFBA 

The potential function K2 was used, with parameter 
α = 60. The ordered data set is obtained starting from 
x60, which is marked distinctly, as illustrated in 
Figure 11. 

 

 

 

 

 

 

 
 
Fig. 11. The ordered data set II, starting from x60  
 
The boundary between clusters can be easily detected 
by analyzing the series Ak and Rk, which are 
represented in the Figure 12. In the second series, it 
is easier to identify the clusters, because the cluster 
separation in Rk is bigger. 
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Fig. 12. The series Ak and Rk for ordered data set II 
 
In the second case, the data set III with two irregular 
clusters is considered. The clusters have also 50 and 
respectively 100 points. Even for different starting 
point, the clusters are well identified with PFBA, as 
shown in Figure 13. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Clustering irregular shapes with PFBA 
 
The parameter α must characterize oblong clusters 
and its value ought to be big, being chosen α = 60. 
Two starting points were chosen, x1 and x60, and the 
ordered data sets are illustrated in Figures 14 and 15. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. The ordered data set III, starting from x1 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15. The ordered data set III, starting from x60 

 3.5 Robustness to noise 
 
In many cases, data sets are affected by noise, which 
can radically change the clustering results, by 
modifying the positions of set points.  
Consider the data set IV, with two small clusters, 
which are well identified by both clustering 
algorithms: PFBA and ISODATA. In Figure 16 are 
illustrated: the clusters, the cluster centroids and the 
boundary between them.  
If the noise affects the data set and changes the 
position of one point which is marked with ‘+’, the 
PFBA clustering is not affected, but the ISODATA
clustering is modified, as illustrated in Figure 17. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16. Clustering of the data set IV, with PFBA 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 17. Noisy set clustering with ISODATA  
 

4. CONCLUSION 

The PFBA do not use any prototype vectors of the 
clusters. Therefore, they give good results even for 
complex shape clusters. In addition, PFBA can 
separate singular points and are more robust to noise. 
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