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Abstract: This paper is a brief review of the recent literature regarding the applications 
of machine vision in autonomous vehicles. We emphasize the main achievements as 
well as some challenges and limitations of these technologies, and also propose a simple 
taxonomy of the research directions in this field. The main contribution of this work is 
to provide a quick introduction and a bird's eye view of the extremely vast literature on 
this topic, and to identify some useful resources for starters. 
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1. INTRODUCTION 

According to recent statistics (STATISA, 2015) there 
are over 1.3 billion road vehicles in use. They 
account for 1.25 million deaths every year in road 
crashes (WHO, 2015). The associated material losses 
are in the trillions. 

Since human errors are responsible for 90% of  the 
total car crashes (Fagnant & Kockelman, 2015), 
developping intelligent autonomous vehicles (AVs) 
appears to be a very efficient way to reduce the death 
toll and the exorbitant insurance costs resulting from 
traffic accidents. 

Additional benefits of driverless cars include: 
increased independent mobility for the elderly, and 
for people with various disabilities, reduced traffic 
congestion, less pollution, and energy conservation. 

Considering these promises, a series of major 
technological players and stakeholders in the 
automotive industry, like Google, Tesla, Uber, 

General Motors, Mercedes, Volvo, Toyota invest 
hundreds of millions Euros in research for the 
development of (semi)autonomous cars. 

The results recorded so far include the famous 
Google self-driving car project (Waymo, 2017) and a 
variety of commercialy available "Advanced Driver 
Assistance Systems" (ADAS) that address specific 
safety enhancement issues. For example, the Volvo 
"City Stop" system (Volvo, 2014) is a forward 
collision prevention system designed for low speed 
traffic in crowded metropolitan areas, based on low 
cost LIDAR sensors. 

According to Krasniqi & Hajrizi (2016)  the market 
for ADAS was $15.0 billion in 2016, and estimated 
to increase to $23.6 billion in 2022. 

In the same time, the prototypes of the 
Google/Waymo self-driving cars autonomously 
travelled over 10,000,000 miles without major 
incidents since 2009, when the project started. 
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All this work is also reflected in a vast scientific 
literature. For example, a search in the Web of 
Science (WoS) with the keyword "autonomous 
vehicles" in the "topic" field returns over 14,000 
results for the past 10 years.  The same search in 
Google Scholar returns 34,000 results. Even much 
narrower searches like "autonomous vehicles" AND 
("computer vision" OR "machine vision") return over 
1000 results in WoS. 

Under these circumstances, it is next to impossible 
(and far beyond the scope of this study) to perform an 

exhaustive review of the literature on this topic. We 
only aimed to draw a big picture of this area of 
research, emphasizing some notable results (and 
failures), and to identify useful resources for readers 
interested in this field. 

2. A WORD ABOUT THE METHODOLOGY  

Starting from the works of Bengler et al. (2014), Finn 
& Scheding (2010), and Schaub (2018) we derived a 
general sensing and control structure of an 
autonomous vehicle. It is shown in figure 1. See also 
(Behere, 2015). 

 

Fig.1. The general sensing and control structure of an autonomous vehicle (AV) 

Furthermore, we searched the survey articles 
dedicated to the subsystems of the AV, with a focus 
on the "Perception" block, which includes 
dedicated modules for road detection, lane 
detection, vehicle detection, pedestrian detection, 
traffic light and traffic signs detection. 

To this purpose, we conducted searches in WoS and 
Google Scholar for articles containing the keyword 

"survey" in the title AND "road 
detection"/"pedestrian detection" etc. in the topic. 
We filtered out the articles about aerial and 
underwater vehicles. When multiple choices were 
available, we selected the articles with a higher 
number of citations. The short list is presented in 
Table 1. 

 

Table 1. The short list of articles considered for analysis 

Nr. Publication Topic 
[1] Hilel et al. (2014) Road and lane detection 
[2] Sivaraman & Trivedi, (2013). Vehicle detection 
[3] Bonin-Font et al. (2008) General issues of visual navigation of 

autonomous vehicles 
[4] Geronimo et al. (2010) Pedestrian detection 
[5] Bernini et al. (2014) Obstacle detection 
[6] Kastrinaki et al (2003) Video processing techniques for traffic 

applications 
[7] Diaz et al (2015) Traffic light detection 
[8] Fu & Huang, (2010) Traffic sign recognition 
[9] Xue et al. (2018) Scene understanding 
[10] Janai et al. (2017) State of the art in computer vision for AV 
[11] Shi et al. (2017) Algorithms and hardware implementation for 

visual perception in autonomous vehicles 
[12] Horgan et al. (2015) Taxonomy of vision based driver assistance 

systems 
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3. LITERATURE REVIEW 

3.1. General Issues of Machine Vision for 
Autonomous vehicles 

A very comprehensive and up to date survey of the 
general research topics related to machine vision 
for autonomous vehicles is available in (Janai et al., 
2017). They also offer a valuable interactive web 
tool that provides quick access to the summaries of 
the reviewed articles. 
(http://www.cvlibs.net/projects/autonomous_vision
_survey/ Accessed December, 2018). 

The following presentation is structured according 
to an implicit taxonomy that divides the existing 
literature in two major classes, according to the 
level of data processing reported. Low level data 
processing include data acquisition, preprocessing, 
lane/road detection, vehicle detection and tracking, 
pedestrian detection, traffic lights and traffic signs 
detection. High level data processing include "scene 
understanding" and, in a larger view, prediction of 
human behavior in traffic. 

3.2. Low Level Data Processing in Machine Vision 
for Autonomous Vehicles 

Data acquisition 

Monocular vision cameras are the most common 
modality used for data acquisition in machine 
vision applications. The minimum resolution of the 
camera can be computed (Hilel, 2014) with (1) 

(1) 
W

d
CNp =  

where: 

Np is the horizontal resolution of the camera (in 
pixels) , C is the Field of View (in radians), d is the 
distance at which the system is required to 
recognize lane marks, and W is the width of the 
lane marks. 

Obviously, the 2D images provided by monocular 
cameras lack depth information. Therefore, it is 
mandatory either to use additional sensors (e.g. 
LIDAR), or use stereo vision camera and more 
complex algorithms (see Bernini et al., 2014) to 
process the visual data in 3D. However, it is worth 
to note that processing the stereo vision data is 
considerably more difficult than processing LIDAR 
data, and the results are less accurate. 

Image pre-processing 

Typical pre-processing operations include camera 
calibration, shadow reduction, exposure time 
(dynamic) adjustment. Though these operations are 

relatively simple when working with static images, 
they become a challenge when real-time 
adjustments are required (think of the variations of 
pixel intensity when passing through a short tunnel 
or when driving on very narrow streets in historical 
urban areas).  

Excellent sources of information on algorithms for 
preprocessing visual data are in (Corke, 2017) and 
(Nixon & Aguado, 2012). 

Lane Detection 

Lane marks can only be detected visually - 
therefore all lane detection solutions must rely on 
machine vision. Since the problem of lane detection 
is central in any AV perception system, it results 
that such system must contain a mandatory machine 
vision module. 

Since lanes are delimited with relatively uniform 
marks, the lane detection is typically treated as a 
feature extraction problem. Complete and up to 
date information about the research on road and 
lane detection solutions is available in (Hillel, 
2014), (Sivaraman, 2013) and (Zhu et al., 2017). 

The problem of road detection is more complicated 
than lane detection mainly because there are no 
standard marks for the boundaries of the roads. 
Therefore, many of the existing solutions (see Zhu 
et al., 2017) are based on detecting an elevation gap 
between the road and its surroundings, or by 
assuming that the road surface has an uniform 
appearance or color. 

Vehicle Detection 

Vehicle detection usually requires some active 
sensors (LIDAR or Radar) besides a camera. These 
active sensors detect "objects" that are subsequently 
classified as vehicles or non vehicles by processing 
the visual data from a camera. 

Detected vehicles need further tracking in order to 
predict their future position and maneuvers. 

While the actual detection relies on technologies 
like HOG (Histogram of Oriented Gradients) 
features (see Dalal & Triggs, 2005), or Haar-like 
features (Wijnhoven & de With, 2011), tracking is 
performed by means of Kalman filters (Alonso et 
al, 2008) and particle filter (Niknejad, 2012). 

A comprehensive survey of the literature on vehicle 
detection is available in (Sivaraman & Trivedi, 
2013). 
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Pedestrian Detection 

Vision based pedestrian detection is a demanding 
task for several reasons (as shown in Geronimo et 
al., 2010): 

- They must be detected in outdoor urban 
environments, usually on very cluttered 
backgrounds (see figure 2), and under variable 
illumination. 

- Their appearance can be very variable, due to 
clothing, height, viewing angle, or the objects they 
carry. Moreover, they can be partly occluded by 
parked vehicles, advertising panels, or other 
elements of the urban landscape. 

- It is virtually impossible to predict the behavior of 
pedestrians, therefore the detection system should 
have a very good reaction time. 

 

Fig.2. Image of pedestrians waiting at a crossing in 
India (Image source Wikipedia) 

Typical data processing involved in pedestrian 
detection include (Geronimo et al., 2010): 

- Foreground segmentation 

- Object classification 

- Verification 

- Tracking 

More recent research propose solutions based on 
deep convolutional neural networks  (Tome et al., 
2016), combinations of sensors: LIDAR + camera 
(El Ansari et al., 2018), or  FIR  (Far Infrared) 
cameras (Gonzales et al., 2016).  

See also (Dollar et al., 2012) for a good review of 
the state of the art in pedestrian detection. 

Traffic Light Detection 

This is a much simpler task compared to pedestrian 
detection: traffic lights are designed to visible, they 
are static, have known colors and predictable 
shapes. A survey of the research in this field is 
available in (Diaz, 2015). 

Traffic Sign Detection 

Having standardized colors and shapes, traffic signs 
are relatively easy to detect and classify in static 
images. However, in practice, this task must be 
executed in real-time along  with many other 
machine vision tasks starting from a dynamic visual 
data stream. Therefore, we are still far from having 
definitive results in this field. A survey of the 
research on automatic traffic sign recognition is 
available in (Fu & Huang, 2010). 

3.3. High Level Data Processing 

Scene Understanding 

It is pretty obvious that the completion of the low 
level vision tasks described above are not enough to 
build a comprehensive scene understanding. 
Moreover, vision alone appears to be insufficient 
for scene understanding, and Xue et al. (2017) 
argue in favor of vision based fusion of multiple 
sensors. 

Xue et al. (2018) describe an event-based reasoning 
approach for scene understanding (see figure 3). 

 

Fig.3. Scene understanding through event reasoning 
(adapted from Xue et al, 2018) 

In this view, the concept of "event" (vehicle event 
or pedestrian event)  is defined starting from the 
"traffic saliency" - a particular region of the scene 
representation that should draw the attention of the 
(automatic) driver. 

If detecting vehicle events (e.g. lane change, 
overtaking) may seem easier to approach, 
pedestrian events - such as sudden road crossing - 
are much more difficult to detect, mainly because 
their higher mobility, unpredictable start-stop 
behavior, and trajectory changes. 

Prediction of pedestrian intentions is usually based 
on detecting variations of the velocity or 
orientation, by comparing the past behavior (or 
average behavior patterns) with current visual data. 

Despite the multiple contributions cited in the 
survey signed by Xue et al. (2018), we believe that 
the research on traffic scene understanding is still in 
its infancy. 

Predicting human behavior in traffic 

There are not just pedestrians in traffic: humans are 
also present in and around the ego-vehicle, in and 
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around other vehicles, or they may be present as 
cyclists and traffic Police officers. 

Ohn-Bar & Trivedi (2016) provide an analysis of 
the existing literature on automatic detection of 
human behavior in traffic. 

The topic is complex and interdisciplinary. The 
existing solutions are context-specific (e.g. 
distracted driver or pedestrian, Police officer 
present, abnormal driving behavior etc.) and rely on 
detecting head orientation, gaze target, hand 
position and gestures, unexpected motion and other 
clues. 

3.4. Benchmarks and Datasets 

Two of the most popular datasets & benchmarks for 
machine vision for autonomous vehicles are the 
CALTECH-USA dataset (described in Dollar et al., 
2012) and KITTI  (Geiger et al., 2012). 

CALTECH-USA dataset is designed for pedestrian 
detection, and consists in about 10 hours video 
recorded from a car in traffic through urban roads. 
Additional files and utilities and details about the 
structure of the dataset are available on the 
dedicated web site (CALTECH, 2012). 

The dataset created by the Institute of Technology 
from Karlsruhe, Germany (available online, KITTI, 
2012) is a multi purpose dataset and benchmark 
tool, containing - besides the raw data collected 
with two high resolution grayscale and color 
cameras - ground truth information from a 
Velodyne laser scanner and a GPS localization 
system. 

More information about other existing datasets and 
benchmarking tools is available in (Xue et al, 
2018),  and (Zhu et al, 2017). 

3.5. Hardware Platforms 

The main issue with the machine vision tasks for 
autonomous vehicles is that they involve large 
computational loads, very difficult to be executed 
in real-time. Among the proposed solutions for this 
problem, hardware acceleration techniques seem to 
be promising. Karalot & Morris (2010) compared 
GPU and FPGA implementations for analyzing 
real-time stereo vision video and concluded that 
FPGA seems superior because it is much cheaper 
and slightly faster than a nVIDIA GeForce 280 
GPU card. An additional advantage is that it is 
easier to connect a camera to a FPGA. 

In a more recent work, (Luo & Lin, 2018), FPGA 
was successfully used for a complex pedestrian 
detection task based on HOG. 

4. DIRECTIONS FOR FUTURE WORK 

After reviewing the recent literature on machine 
vision for ADAS and AV, we notice that, despite 
the significant progress reported in the past years, 
the existing solutions seem excessively complex 
and costly, and therefore they have little chances to 
be included in commercial devices applicable on a 
large scale. 

In our opinion, the main reason for this is the so-
called "anthropomorphic bias" (Dacey, 2017) - the 
persistent belief that the various machines we 
design must follow the human model in what 
concerns perception, appearance, or behavior. 

Human driving in 90% visual, therefore we assume 
that automatic driving should also rely mainly on 
machine vision. 

In fact, as shown in (Macadam, 2003), the human 
driver model we try to imitate is far from being 
perfect, and we know that 90% of the accidents are 
caused by human errors. Creating rudimentary 
copies of an imperfect model is not the best strategy 
to solve the complex problems of the autonomous 
vehicles. 

Therefore, we believe that exploring alternative 
solutions based - for example - on certain types of 
"cooperative perception" (Kim et al., 2015; Susnea, 
2015; Susnea & Axenie, 2015) or "platooning" 
(Bergenhem et al., 2012) might lead to faster 
progress of the research in this field. 

After reading a lot of studies on autonomous 
vehicles, we tend to agree with Litman (2017), who 
writes: "During the 2020s and perhaps the 2030s, 
autonomous vehicles will be expensive novelties, 
unable to operate in conditions such as heavy rain 
and snow, unpaved roads and mixed urban traffic.... 
It will probably be the late 2030s or 2040s before 
they become affordable to middle-income 
households." 

5. CONCLUSION 

We presented a systematic overview of the 
extremely vast and diverse literature regarding 
machine vision techniques for autonomous 
vehicles. Our objective was to provide a quick 
introduction and a bird's eye view of the main 
topics of this research field. To this purpose, we 
identified reviewed a relatively small number of 
comprehensive surveys of the state of the art in the 
main research directions. We also proposed a 
simple taxonomy of the existing literature, and 
identified some of the best resources available for 
starters. 
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