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Abstract: Change detection and diagnosis are important activities and research 
directions, in the field of system engineering and conditional maintenance of the 
equipment and industrial processes. The processed signals are coming from vibration 
generated by incipient faults in mechanical structures, e.g. bearings. Classical 
algorithms based on various version of CUSUM do not have enough performances to 
use intensively in real industrial application. The present work considers two new 
algorithms for change detection working on real industrial data of radial bearings. One 
is based on classical CUSUM criterion applied to the Renyi entropy. The second one is 
based on energy processing distributed over time-frequency region. The algorithms are 
tested on real recorded data. The results indicate good behavior and performance of the 
proposed algorithms, and define the rationale to implement them in commercial 
software product for change detection and diagnosis.   

Keywords: signal processing, change detection, fault detection, Renyi entropy, 
vibration, time-frequency transform. 

 

1. INTRODUCTION 

In the field of change detection and process 
diagnosis, two paradigms are commonly used. The 
first one is based on the equations of the model. A 
change in the evolution of the signals of the observed 
process and those of the model is the first step in the 
detection of a change. The second approach is based 
on statistical signal processing of the signals coming 
or extracted from the studied process. The signals 
could be processed directly by computing various 
statistic moments and criteria or are processed to 
identify their mathematical models. The above 
approaches are well explained in various books and 
articles as: (Patton, 1989; Gertler, 1998; Isermann, 
1997) for the general problem of change detection 

and diagnosis; (Chen and Patton, 1999; Sobhani-
Tehrani and Khorasani, 2009; Venkatasubramanian, 
et al, 2003) for change detection based on process 
modeling and fault identification; (Gustafsson, 2001; 
Basseville, 1997;  Mangoubi, 1998) for statistic 
signal processing.  

The highlighted classical methods have some 
limitations in the case of complex signal and 
processes. The new methods consider space changes 
for decision, new entropies measures and advanced 
signal processing methods, as those based on time-
frequency approach. 

The present work considers three algorithms for 
change detection, namely: CA (Classic algorithm 
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based on CUSUM method); AA1 (Advanced 
algorithm based on CUSUM applied to the Renyi 
entropy); AA2 (Advanced algorithm based on the 
energy processing spread in the time-frequency 
domain and by using the Wigner-Ville transforms). 
Real data records are considered from two sources, 
(Case Western Reserve University Bearing Data 
Center, 2017; VIBROCHANGE, 2017). The results 
of the algorithms are compared and discussed from 
accuracy point of view. 

The paper is organized in five main sections. Section 
two introduces the basic of the proposed algorithms, 
i.e. the CUSUM criterion, the Renyi entropy and 
Wigner-Ville time-frequency transform. Section three 
introduces the main features of the data used for 
experiments. Section four presents the algorithms 
mainly based on pseudo code. Section five presents 
the experimental results based on computer 
simulation and the last section concludes the paper. 

2. THE BASIC KNOWLEDGE 

This section briefly introduces the basic knowledge 
used in this work, i.e. CUSUM criterion, the Renyi 
entropy and Wigner-Ville time-frequency transform. 

The principle of the CUSUM method was introduced 
by (Page, 1954), in the context of products quality, 
but can be extended to other signals as well to detect 
changes in the mean of the signal, with independent 
samples, identically distributed before and after the 
change time. If a signal vector x is considered, the 
most used and general expression of the CUSUM 
criterion is 
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where k is the reference value which corresponds to 
the difference between the average values from the 
two states or regimes, normal and abnormal. The 
reference value, k, is computed by using knowledge 
from the model of the signal x(t), via plausibility 
ratios. A change occurs if  

(2)    CS(i)>Th 

where Th is a trigger parameter, bigger than the 
nominal value. The evolution of the variable 
CUSUM is linear with the slope, changing when the 
mean of the signal changes. This is particularly 
important because some versions of the CUSUM 
methods reset the origin of the samples, when 
evaluation of the criterion (2) is true. The second step 
or stage in the change detection method is the 
estimation of the change point. In the case of the 
batch processing the estimation is 

(3)      { }CSM maxarg=  

The point M is the last point before the change starts 
and the point (M+1) is the first after the change. The 
recursive equation which corresponds to the on-line 
detection procedure is  
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More consideration and examples are available e.g. in 
(Woodall and Montgomery, 2014; Pastell and 
Madsen, 2008; Siettos and Russo, 2013; Xin, et al, 
2013; Tam, 2009). 

The Renyi entropy is intensively used in the field of 
statistical signal processing, especially in non-
stationaries conditions, being able to estimate the 
number of the components of complex signals and 
the degree of randomness in various signal 
representation framework, in time or frequency 
domains. In this work, the 2nd order Renyi entropy is 
used by considering 
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where P(j),j=1,…,N are the probabilities of a finite 
set of independent events from a discrete information 
source.  

The computation of the entropy needs the 
probabilities set. If the data set has N samples and the 
observation vectors of size mx1, the Renyi entropy 
estimator is based on (Parzen, 1962), window with 
Gaussian kernel, (Erdogmus, et al, 2002): 
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The kernel size, σ  should be small (relative to the 
standard deviation of the data), (Hild, et al, 2006) 
suggests values between 0.1 and 2 for unit-variance 
signals. 

An important category of time–frequency transforms 
are based on the signal energy distribution in the 
time–frequency domain. They are characterized by a 
kernel function. The properties of the representation 
are reflected by simple constraints on the kernel that 
produces the time-frequency representation with 
prescribed, desirable properties, (Cohen, 1989). A 
mathematical description of these transforms can be 
given by 
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where φ(θ,τ) is a two-dimensional kernel 
function, determining the specific representation in 
this category, and hence, the properties of the 
representation. The star (*) represents complex 
conjugation operator. The basic distribution in this 
approach is the Wigner Distribution. If x(t) is a 
continuous (possible complex) signal, the Wigner 
distribution of the signal x(t) is defined (in time 
domain) as, (McFadden and Wang, 1990), 
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For the cases where x(t) is an analytic signal, the 
Wigner distribution is called Wigner-Ville 
distribution or Winger-Ville transform. This 
distribution satisfies a large number of desirable 
mathematical properties, as it is described in the 
specialized literature, e.g. (Auger, et al, 1996; 
Hlawatsch, and Boudreaux-Bartels, 1992). It has also 
some drawbacks, as the apparition of the cross-terms. 
The coefficients of the time-frequency transform 
define a time-frequency image. 

3. DATA RECORDS 

Data were considered for the case of faults in 
bearings, available from (Case Western Reserve 
University Bearing Data Center, 2017), and briefly 
described in Table 1. Three faults are considered, as 
F1 (Inner race), F2 (Ball) and F3 (Outer race). The 
case F0 means no faults. Four sizes of the faults were 
considered, by introducing the cases 1 to 4. The file 
data0 contains the first 5,000 elements of fd. All 
names beginning with “d” indicates a file with 5,000 
samples from normal conditions (no faults) and 6,000 
samples for the cases with faults. In total, each data 
file has 11,000 samples with sampling rate of 12,000 
sample/s. In the case of the fault F3, there are four 
cases, depending on the transducer positions and 
orientations. The following test cases could be 
considered: 

(9) T0: D_0 = d0 // fault free 

(10)  T1: D_1 = d0+d1+d6+d9+d14 // F1 

(11) T2: D_2=d0+d2+d7+d10+d15 // F2 

(12) T3: D_3= d0+d3+d8+d11 // F3 

Table 1. Data Test Set 

  Faults (with files) 

F0 F1 F2 F3 

 Case 
Fault 
size Free Inner 

Race 
Ball 06HH 03HH 12HH 

0 0.000 “ d0 - - - - - 

1 0.007" - d1 d2 d3 d4 d5 

2 0.014" - d6 d7 d8 - - 

3 0.021" - d9 d10 d11 d12 d13 

4 0.028" - d14 d15 * 

The previous data has the advantage of physic 
compliance but the disadvantage of the variable 
length of the data vector. Thus, a more simple data 
structure were considered by considering a matrix 
composed of 15 columns of N =11,000 elements as 

(13)    [ ]4321 DDDDD =  

(14) [ ]543211 ddddd=D  

(15) [ ]8762 ddd=D  

(16)   [ ]1312111093 ddddd=D  

(17)  [ ]15144 dd=D  

The first 5,000 elements of each column are from the 
fault free vector, i.e. d0.  

4. DESCRIPTION OF THE ALGORITHMS 

The basic structure of data processing and 
implementation of the algorithm are presented in Fig. 
1. Computer simulation were conducted with a 
sliding rectangular window of length n=1,000 
samples over the set of N samples. Data was low pass 
filtered by using a cut-off frequency of 5,000 kHz. 
An algorithm includes a computation block for 
calculus of various change detection criteria, 
including parameter estimations. The values of the 
criteria are compared with one or more reference 
values, in order to decide which hypothesis is true. 
Depending on the selected value an action is 
triggered, e.g. activating an alarm. 
 
The threshold values are suggested by the end user of 
the equipment, which known better the features and 
the working regimes of the process. These values 
could be for various degrees of the faults, as incipient 
(small), important (medium) or very important or 
major (high). Three algorithms are tested: CA – an 
algorithm based on CUSUM criterion; AA1 – an 
algorithm which uses the Renyi entropy for the input 
of the CUSUM criterion; AA2 – an algorithm based 
on the energy distribution through the time-frequency 
domain.  
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Fig.1. The basic structure of the data processing and 
algorithm implementation 

In the case of the CUSUM, the change detection 
point is estimated by the coordinate (time moment) of 
the minimum value of the CUSUM variable. The 
algorithm AA2 is based on Wigner-Ville transform. 
For each record of N sample a sliding non-
overlapping window of n<<N samples is considered. 
The algorithm estimate an interval of change, i.e. the 
length of the sliding window must be smaller as 
possible. Each window of observation generates a 
time-frequency frame/image. There are two aspects 
of decisions: (i) quantitative, based on the change of 
the energy in frequency domain, from one frame to 
another one; (ii) qualitative, based on the content of 
each time-frequency image and also on the evolution 
of the content when the frames are changing. The 
change criterion is based on the maximum variation 
of the energy between frames (in number of nf). The 
normalized energy is computed for each frame by 
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The decision criterion could be complex as in 
(Aiordachioaie, 2013) or a simple one which selects 
the maximum difference between two consecutive 
frames 

(19)   { }nfjjEjEj :1,)1()(maxarg* =−−=  

5. EXPERIMENTAL RESULTS 

In the previous data set, the true change value is 
5001. The CUSUM based algorithm (CA) has 
relatively good results. The estimated values are 
around 4992, excepting the case #12 when a value of 
5130 was obtained. The maximum absolute error is 
129 and the mean square error is 1185. In the next 
two figures, two cases are presented: case #1 in Fig. 2 
and case #12 in Fig. 3.  

 

Fig.2. Results of the CA in the case #1. 

 

Fig.3. The results of the CA in the case #12 

The results of the AA1 algorithm are much better. 
The maximum absolute error is 43 and the mean 
square error is 315.6. The results obtained for the set 
of two test cases, i.e. #1 and #12, are presented in 
Fig. 4 and 5. Similar results are obtained with the 
second data source, i.e. (VIBROCHANGE, 2017). 

 

Fig.4. The results of the AA1 for the case #1 
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Fig.5. The results of the AA1 for the case #12 

The next algorithm is AA2, and it is based on 
Wigner-Ville transform. For each record of N = 
11,000 samples a non-overlapping sliding window of 
n = 1000 samples is considered. In Fig. 6 and 7 the 
results of AA2 for the test cases #1 and #12 are 
presented. Each figure has four sub-figures. On the 
left side, on the vertical direction, the power 
spectrum is presented. On the bottom left corner, the 
evolution of the energy over intervals (frames) is 
presented. On the bottom side, the evolution of the 
signal during the frame is indicated. Finally, the 
Wigner-Ville image is presented on the right side. 
The information content of these images is not 
explored here.  

There are some parameters which should be clarified. 
The most important is the length of the observation 
window. Computer based simulation show an 
optimum length between 500 and 600 samples. 
Smaller lengths do not catch the change and longer 
lengths do not provide enough precision. In fig. 8, the 
evolution of the energy over 22 frames is presented. 
At the bottom of the figure, the evolution of the 
gradient is presented. The biggest value (represented 
by a circle) indicates a change in the frame no. 11, 
i.e. in the interval (5000, 5500). 

 
Fig.6. The results of the AA#2 for the case 1 
 

 

Fig.7. The results of the AA2 for the case #12 

 

Fig.8. Details of the energy evolution for AA2, case 
#12 

6. CONCLUSIONS 

The main objective of the paper was to present some 
results concerning change detection in vibrational 
processes (processes which generates vibrations), by 
using two advanced methods, based on Renyi entropy 
and time-frequency transforms.  

The reference method was based on CUSUM, a well-
known detection method used in statistical signal 
processing. Data from two sources was considered, 
both from experimental processes, but the results 
from only one source were presented and discussed.  

The simulation results show better performances for 
the algorithm based on Renyi entropy. The uses of 
the time-frequency paradigm, here by the Wigner-
Ville transform, reveals new sources of information 
based on the time-frequency images associated to the 
time-frequency transforms. Attention must be paid to 
the optimization of some parameters, as the length of 
the observation window. In the case of the AA1, the 
window is sliding in small steps and the computation 
time is high. In the case of AA2, based on the change 
in the energy, the length must be optimized in the 
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sense to have quick response (small width of the 
observation window) and robustness (high width of 
the window).  

Taking into account the fact that the time scale is at 
the level of sampling period and the sampling rate is 
very high, the length of the window is not a major 
drawback for mechanical vibration of ordinary 
electrical machines, i.e. with angular speed less of 
5,000 rpm. 

ACKNOWLEDGMENT 

The work was partly supported by the Romanian 
Council for Research (UEFISCDI) under PN-II-PT-
PCCA-2013-4-0044 and Financial Contract 
224/2014, “Experimental model for change detection 
and diagnosis of vibrational processes using 
advanced measuring and analysis techniques model-
based  (VIBROCHANGE)”. 

7. REFERENCES 

Patton, R.J., Frank, P., and Clark, R. Eds. (1989). 
Fault Diagnosis in Dynamic Systems – Theory 
and Application. Prentice Hall. 

Gertler, J., (1998). Fault Detection and Diagnosis in 
Engineering Systems. Marcel Dekker. 

Isermann, R., (1997). Supervision, fault-detection 
and fault-diagnosis methods – An introduction, 
Control Engineering Practice, 5 (5).  

Chen, J. and Patton R.J., (1999). Robust Model-
Based Fault Diagnosis for Dynamic Systems. 
Kluwer Academic Publishers. 

Sobhani-Tehrani, E. and Khorasani, K., (2009).  
Fault Diagnosis of Nonlinear Systems Using a 
Hybrid Approach, Lecture Notes in Control and 
Information Sciences, 383. 

Venkatasubramanian, V., Rengaswamy, R., Yin, K, 
and Kavuri, S.N.  (2003). A review of process 
fault detection and diagnosis: Part I: Quantitative 
model-based methods, In Computers & 
Chemical Engineering, 27 (3), pp. 293-311. 

Gustafsson, F. (2001). Adaptive Filtering and 
Change Detection, Wiley. 

Basseville, M. (1997). Statistical approaches to 
industrial monitoring problems – Fault detection 
and isolation, Proceedings of the 11th 
IFAC/IFORS Symposium on Identification and 
System Parameter Estimation – SYSID’97, 
Kitakyushu, Japan, July 8-11.  

Mangoubi, R.S., (1998). Robust Estimation and 
Failure Detection. Springer-Verlag. 

Case Western Reserve University Bearing Data 
Center, (2017). Available: http:// 
csegroups.case.edu/bearingdatacenter/home. 

SKF, Technical data, (2017) Available: 
http://www.skf.com/group/index.html. 

VIBROCHANGE, A research contract. (2017). 
http://www.etc.ugal.ro/VIBROCHANGE/index.
php?Lang=En.  

Page, E.S., (1954). Continuous Inspection Scheme,. 
Biometrika, 41(1/2), pp. 100–115. 

Woodall, W.H. and Montgomery, D.C. (2014). Some 
Current Directions in the Theory and 
Application of Statistical Process Monitoring, 
Journal of Quality Technology, 46(1), pp.78-94. 

Pastell, M. and Madsen, H. (2008). Application of 
CUSUM charts to detect lameness in a milking 
robot, Elsevier, Expert Systems with 
Applications, 35, pp. 2032-2040. 

Siettos, C.I. and Russo, L. (2013). Mathematical 
modeling of infectious disease dynamics, 
Virulence, 4(4), pp. 295-306. 

Xin, L., Yu, PL.H. and Lam, K., (2013). An 
Application of CUSUM Chart on Financial 
Trading, in CIS, 9th Int. Conf. on, pp.178-181. 

Tam, D. (2009). A Theoretical Analysis of 
Cumulative Sum Slope  Statistic for Detecting 
Signal Onset and Offset Trends from 
Background Noise Level, The Open Statistics 
and Probability Journal, 1,  pp. 43-51. 

Parzen, E. (1962). On estimation of a probability 
function and mode, Annals of Mathematical 
Statistics, 33(3), pp. 1065–1076. 

Erdogmus, D. et al., (2002). Blind source separation 
using Renyi’s alpha-marginal entropies, 
Neurocomputing, 49(1), pp. 25–38. 

Hild II, K.E., Erdogmus, D. and Principe, J.C. 
(2006). An analysis of entropy estimators for 
blind source separation, Signal Processing, 
86(1), pp.182-194. 

Cohen, L.  (1989).  Time-Frequency Distributions - 
A Review, Proceedings of the IEEE, 77(7), pp. 
941–980. 

McFadden, P.D. and Wang, W. (1990). Time-
Frequency Domain Analysis of Vibration 
Signals for Machinery Diagnostics. (I) 
Introduction to the Wigner-Ville Distribution, 
University of Oxford, Report OUEL 1859/92. 

Auger, F., Flandrin, P., Gonçalvès, P. and Lemoine, 
O., (1996). Time-frequency Toolbox, CNRS 
France - Rice University. 

Hlawatsch, F. and Boudreaux-Bartels, F. (1992).  
Linear and Quadratic Time-Frequency Signal 
Representations, IEEE Signal Processing 
Magazine, pp. 21–67. 

Aiordachioaie, D. (2013). Signal Segmentation Based 
on Direct Use of Statistical Moments and Renyi 
Entropy, 10th International Conference on 
Electronics, Computer and Computation 
(ICECCO’13), Istanbul, Turkey, pp. 359-362. 

Basseville, M. (2013). Divergence measures for 
statistical data processing - An annotated 
bibliography, Signal Processing, 93, pp. 621-
633. 


