
THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

__

This paper was recommended for publication by Adrian Filipescu

31

DESIGNING A MODULAR SIMULATOR FOR A NAVIGATION LOCK

Lucian-Florentin Barbulescu
1
, Viorel Minzu

2

1
University of Craiova, Faculty of Automation, Computers and Electronics, Department

of Computers and Information Technology, Craiova, Romania,

e-mail: lucian.barbulescu@cs.ucv.ro
2
”Dunarea de Jos” University of Galati, Faculty of Automatic Control, Computers,

Electrical Engineering and Electronics, Department of Automatic Control and

Electrical Engineering, e-mail: viorel.minzu@ugal.ro

Abstract: When building a simulator for an industrial installation, a divide and conquer

approach can have very good results. This means that the original installation is divided

into smaller components which are simulated independently and then interconnected to

obtain the final product. This paper presents the steps required for designing such a

modular simulator for a navigation lock that allows the operators to view and control all

phases of operation.

Keywords: distributed systems, navigation lock, modular simulators, dynamic systems,

discrete event simulations

INTRODUCTION

The evolution of hardware systems and computer

networks has led to a rapid development of

distributed applications, in general, and

parallel/distributed simulators, in particular. It is now

very easy and relatively cheap to build a fast network

of computers and use their combined power in order

to obtain a system on which a parallel or distributed

application can run. Today there are a lot of types of

applications which are implemented to run in this

environment, from databases to web applications. A

special type of application that can run in this

environment is the parallel/distributed simulator

(Fujimoto, 2000)

One such application was presented by Barbulescu

(2009) and can be used to build simulators for large

industrial installations by means of a divide-and-

conquer-like method. In other words the initial

industrial installation, which can be viewed as a

dynamic system, is “split” into smaller components,

each being also interpreted as a dynamic system

(Kulakowski, 2007).

For each component there can either be a new split

into smaller entities or a software module will be

implemented. This module can be derived from the

abstract elementary simulator (Barbulescu, 2012), in

which case the implementation is very simple and

follows only the required functionality, or it must at

least implement the interface “ElementarySymulator”

described by Barbulescu (2012), Independently on

the solution chosen those module must act as

dynamic systems, that is they must accept external

values as input variables and generate values as

output variables. Those values are received from and

sent to other modules from within the system.

Based on the specific of the simulated installation

there can be other modules required, for example

clock signal generators, graphical user interface etc.

The task of selecting those additional modules is

assigned to the designer of the simulator. He, based

on his experience, must decide the required

components in such a way that the system will work

properly.

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

32

When all modules are designed they must be

interconnected by the means of the communication

framework (Barbulescu, 2010). The simulator

designer must also choose he number of

communication channels and can apply the algorithm

described by Barbulescu (2011).

When the architecture is defined the final stage

consists on the implementation of each module, if

they are not reused, and the deployment on the target

computer or computers.

As a conclusion of the previous presentation, the

development of a simulator based on the distributed

system described by Barbulescu (2009) consists of

four phases:

 Phase 1: The analysis of the installation that

must be simulated and the definition of the

required modules.

 Phase 2: The definition of the communication

channels required to interconnect the modules in

order to obtain the simulator

 Phase 3: The implementation of the modules

that are not already present within the system

 Phase 4: The deployment of the simulator on the

target computer or computers, based on the

desired distribution.

In this paper there will be presented the first two

phases needed when building a simulator for a

navigation lock using the distributed simulation

system.

THE NAVIGATION LOCK

A lock is a device for raising and lowering boats

between stretches of water of different levels on river

and canal waterways
1
. Locks are used to make a river

more easily navigable, or to allow a canal to take a

reasonably direct line across land that is not level.

The distinguishing feature of a lock is a fixed

chamber in which the water level can be varied. At

the ends of the navigation lock there are big gates

that can block the water from entering or exiting the

chamber. With both gates closed, the water level

within the lock can be adjusted to match the canal

water level on either side. Thus, a vessel entering the

lock can be raised or lowered in order to enter the

next level canal section.

1 Lock (Online) Available at:

http://en.wikipedia.org/wiki/Lock_(water_transport)

Fig.1. Navigation lock

Today there are several types of navigation lock

built
2
:

 Simple locks, composed of a single chamber, as

presented in Fig 1;

 Stepped locks, composed of several chamber

placed one after another

 Twin locks, composed of two or more chambers

disposed one near another.

The passing of a ship through a lock is called lockage

or sluicing. Based on the direction of the ship the

operation is named upstream-downstream lockage or

downstream-upstream lockage if the ship passes from

the upper side to the lower side or from the lower

side to the upper side respectively.

In Fig 2 the upstream-downstream lockage of a ship

is presented.

Fig.2. Upstream-downstream lockage operation

The steps required for this operation are:

 The upper valves are opened and the chamber

starts filling with water

 When the level inside the chamber is equal to the

level upstream, the upper gate is opened

 The ship enters the chamber

 The upper gate is closed

 The upper valves are closed

 The lower valves are opened and the chamber

begins to empty

2 Ecluza (Online), Available at:

http://ro.wikipedia.org/wiki/Ecluz%C4%83

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

33

 When the level inside the chamber is equal to the

level downstream, the lower gate is opened

 The ship exists the chamber

 The lower gate is closed

 The lower valves are closed.

In Fig 3 the upstream-downstream lockage of a ship

is presented.

Fig.3. Downstream-upstream lockage operation

The steps required for this operation are:

 The lower valves are opened and the chamber

begins to empty

 When the level inside the chamber is equal to the

level downstream, the lower gate is opened

 The ship enters the chamber

 The lower gate is closed

 The lower valves are closed

 The upper valves are opened and the chamber

begins to fill

 When the level inside the chamber is equal to the

level upstream, the upper gate is opened

 The ship exists the chamber

 The upper gate is closed

 The upper valves are closed.

The simulator for this installation will consider all

the above steps except the ship movement. This is

not part of the current simulation and may be taken

into consideration in a future version.

NAVIGATION LOCK SIMULATOR DESIGN

In this paper it is presented the design for a simulator

for a navigation lock similar to the Romanian one

existing at Iron Gates II. The Romanian navigation

lock
3
 at Iron Gates II is a simple lock with plane

gates upstream and rotating gates downstream. The

chamber is 310 m long and 34 m wide and it is filled

and emptied by means of four engine-controlled plain

vanes situated two upstream and two downstream.

3 Hidroconstructia (Online). Available at:

http://www.hidroconstructia.com/rom/proiecte.php?cmbBranch=5

1.1. Phase 1

The first step in building the simulator for the

navigation lock presented above consists in splitting

the installation into smaller components for which

software modules based on the abstract elementary

simulator (Barbulescu, 2012) can be designed and

implemented. The components identified at this

moment are:

 The plane gate (PP) situated upstream

 The rotating gate (PB), situated downstream

 The navigation lock chamber (SAS)

 The two upper vanes (VU1 and VU2) situated

upstream

 The two lower vanes (VG1 and VG2) situated

downstream

Of course, some of the above components can also be

divided into smaller components like motors, pipes,

levers etc., but this is not applied in this case because

the result will be a very complicated simulation

schema with very few advantages. It will result that,

from the initial analysis of the installation, there are

seven modules and four elementary simulators

required, as the valve simulator can be reused within

the schema.

The second step of this phase consists of identifying

other modules that are required for the system to

work properly. To do this the lockage procedures

described in the previous chapter must be analyzed.

It can be observed that, during the lockage operation,

the upstream and downstream water levels are

required. Those values are needed when deciding that

a gate can or cannot be opened and also are used to

compute the amount of water that passes through the

valves in order to fill or empty the lock chamber.

Because the amount of water upstream or

downstream is much bigger that the quantity that is at

any moment within the chamber, it can be considered

that, no matter how much water is lost or gained, the

level will remain unchanged, thus those values can be

defined as constants. However, since in real life, the

water level can have some variations (like when a

flood is happening) it was decided that two modules

that simulate the water level upstream (NAM) and

downstream (NAV) should be added. The two

modules will be represented by instances of the same

component that, at this moment, generates a constant

value for the water level. If, in the future, it is

required to simulate variations of this level, the

existing component can be replaced with a new one

without affecting the rest of the simulator.

Another observation that can be made is that, during

the lockage operation, there are some time depending

processes like the opening and closing of the gates,

the opening and closing of the valves and the filling

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

34

and emptying of the lock chamber. In order for those

operation to be properly simulated by this system it is

required the usage of the existing component named

clock generator (CLK). This component is already

implemented and, once started, it will emit

periodically a message that contains the elapsed time

interval to the interested modules.

The distributed simulation system makes a separation

between the functional part and the user interface.

Because of this and in order to be able to offer an

interaction with the users, it is required to have the

user interface (UI) component. This component is

already implemented and uses module-defined panels

that can be placed together in order to build elaborate

and user-friendly interfaces.

The last observation that can be made by analyzing

the lockage operation is that some equipment

depends on the state of others. For example, in order

to be allowed to open the upper gate, the water level

inside the chamber must be equal to the upstream

level and the upper valves must be opened or to be

able to operate the upper valves, both gates and the

both lower valves must be closed etc. This can of

course be implemented within each component, but it

will lead to some awkward restrictions. For example,

the valve simulator must be aware of the status of

two gates and two other valves, which can limit its

reusability. It will be very hard to use the same

component within a schema for an installation that

requires a similar valve but that doesn’t have the

same restriction. Also, this component will not be

usable for a similar navigation lock simulator where

there are more than two upper or lower valves. For

these considerations it was decided that it will be

more appropriate to add an enable/disable variable as

input for the modules that depend on others and to

generate those commands within a separate

component named control and command (CC). This

module contains a state machine that can decide,

based on the others statuses and on the water level

within the chamber or at upstream and downstream

level, which entity is active and can be maneuvered

and which is not. This solution has the advantage of

keeping the other modules focused on their specific

functionalities. Also, if a simulator for a navigation

lock that contains more valves or more gates must be

implemented, only this component has to be updated,

the others remaining unchanged.

1.2. Phase 2

After the first phase of the development of the

simulator for the navigation lock it was decided that

the number of components required is twelve. Each

of those components will have input and/or output

variables and their values will be exchanged in order

to obtain the desired functionality.

In phase two there must be decided what are the

variables exchanged by the components and how are

the interconnections realized.

In the twelve tables below there are presented the

input and output variables for each component.

Table 1 The input and output variables for the valves

and gates (VU1, VU2, VG1, VG2, PP, PB)

Module Input

Variables

Output

Variables

VU1 cmdvu1: command

for VU1

t: time interval

psas: pressure in

chamber

pamonte: pressure

upstream

svu1: state of VU1

q: water quantity

pozvu1: position of

VU1

VU2 cmdvu2: command

for VU2

t: time interval

psas: pressure in

chamber

pamonte: pressure

upstream

svu2: state of VU2

q: water quantity

pozvu2: position of

VU2

VG1 cmdvg1: command

for VG1

t: time interval

paval: pressure

downstream

psas: pressure in

chamber

svg1: state of VG1

q: water quantity

pozvg1: position of

VG1

VG2 cmdvg2: command

for VG2

t: time interval

paval: pressure

downstream

psas: pressure in

chamber

svg2: state of VG2

q: water quantity

pozvg2: position of

VG2

PP cmdpp: command

for PP

t: time interval

spp: state of PP

pozms: left engine

position

pozmd: right engine

position

PB cmdpb: command

for PB

t: time interval

spb: state of PB

pozps: left gate

position

pozpd: right gate

position

Table 2 The input and output variables for the lock

chamber, water levels, clock and control and

command (SAS, NAM, NAV, CLK, CC,)

Module Input

Variables

Output

Variables

SAS q: water quantity lost Psas: pressure in

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

35

or gained chamber

hsas: water height

NAM q: lost water quantity pamonte: pressure up.

hamonte: water height

NAV q: gained water

quantity

paval: pressure down.

haval: water height

CLK S: start clock t: time interval

CC hamonte: water height

upstream

spp: state of PP

svu1: state of VU1

svu2: state of VU2

hsas: water height in

chamber

svg1: state of VG1

svg2: state of VG2

spb: state of PB

haval: water height

downstream

cmdpp: cmd for PP

cmdvu1: cmd for VU1

cmdvu2: cmd for VU2

cmdvg1: cmd for VG1

cmdvg2: cmd for VG2

cmdpb: cmd for PB

Table 3 The input and output variables for the UI

Module Input

Variables

Output

Variables

UI hamonte: water height

upstream

spp: state of PP

pozms: left engine

position

pozmd: right engine

position

svu1: state of VU1

pozvu1: pos of VU1

svu2: state of VU2

pozvu2: pos of VU2

hsas: water height in

chamber

svg1: state of VG1

pozvg1: pos of VG1

svg2: state of VG2

pozvg2: pos of VG2

spb: state of PB

pozps: left gate pos

pozpd: right gate pos

haval: water height

downstream

S: start clock

cmdpp: cmd for PP

cmdvu1: cmd for VU1

cmdvu2: cmd for VU2

cmdvg1: cmd for VG1

cmdvg2: cmd for VG2

cmdpb: cmd for PB

Fig.4. The modules used to build the simulator for the navigation lock. Each inter-module communication is

one-to-one.

The variables described in the above tables must be

exchanged between the system modules in order to

obtain a smooth simulation. A graphical

representation of the twelve modules and the

variables exchanged between them is presented in

Fig. 4

Based on this representation, the number of

communication channels needed is 62, which is a

very big number and implies that many hardware

resources will be used for the communication

framework instead of the actual modules needed for

the simulator.

In order to reduce the number of communication

channels the algorithm described by Barbulescu

(2011) can be applied. This ensures that one

component will send the value of any output variable

on only one communication channel and it will

receive the values for the input variables on as few as

possible communication channels.

After the algorithm is applied, the number of

communication channels is reduced to only 15.

Table 4 Communication channels used by the

simulator

Channel Variables Source

Modules

Destination

Modules

1
svu1, svu2, svg1,

svg2, spp, spb,

VU1

VU2

UI

CC

THE ANNALS OF “DUNĂREA DE JOS” UNIVERSITY OF GALATI

FASCICLE III, 2012, VOL. 35, NO. 1, ISSN 1221-454X

__

36

hamonte, haval,

hsas

VG1

VG2

PP

PB

NAM

NAV

SAS

 2

pozvu1, pozvu2,

pozvg1, pozvg2,

pozpps,

pozppd,

pozpbs,

pozpbd,

VU1

VU2

VG1

VG2

PP

PB

UI

 3 q
VU1

VU2

NAM

SAS

 4 q
VG1

VG2

NAV

SAS

 5 pamonte NAM
VU1

VU2

Table 5 Communication channels used by the

simulator

Channel Variables Source

Modules

Destination

Modules

 6 paval NAV
VG1

VG2

 7 psas SAS

VU1

VU2

VG1

VG2

 8 cmdvu1
UI

CC
VU1

 9 cmdvu2
UI

CC
VU2

 10 cmdvg1
UI

CC
VG1

 11 cmdvg2
UI

CC
VG2

 12 cmdpp
UI

CC
PP

 13 cmdpb
UI

CC
PB

 14 t CLK

VU1

VU2

VG1

VG2

PP

PB

UI

 15 S UI CLK

After this analysis all steps needed to design the

simulator are finished. From this point forward all the

components must be implemented and configured to

work as described in the tables 4 and 5.

CONCLUSIONS

The distributed simulation system provides a

framework and a methodology which can be

followed in order to build simulators for a navigable

lock. The number of independent components

required is equal to 8, although the number of

modules used is 12. This difference is because for

some components more than one instance will be

used.

This analysis proved that the system can be used for

designing modular simulators

FUTURE WORK

The implementation of all modules presented in this

paper is the next step required for the validation of

the distributed simulation system. Also, based on the

observed results, the system can suffer modifications

to improve the performance and to allow the

development of simulators for more complicated

installations.

REFERENCES

Barbulescu, L.F., Lungu M. and Andrei D.O. (2009),

Distributed system for industrial simulation,

Annals of the University of Craiova, Volume

6(33), issue. 1, pp. 1-5

Barbulescu, L.F. (2010), Functional analysis of a

communication framework used in a modular

simulator, 14th International Conference on

System Theory and Control, Proceedings, pp.

62-66

Barbulescu, L.F. (2011), An algorithm designed to

determine the optimum number of

communication channels in a modular simulator,

Bulletin of the Polytechnic Institute of Iasi,

Automatic Control and Computer Science

Section, Nr. LVII (LXI), Fasc. 3, pp. 21-32

Barbulescu, L.F. (2012), The abstract elementary

simulator – the base component of a modular

simulator, 16th International Conference on

System Theory and Control, Proceedings

Fujimoto R.M. (2000), Parallel and Distributed

simulation Systems, New York, John Wiley &

Sons,

Kulakowski, B.T., Gardner J.F. and Shearer J.L.,

Dynamic Modeling and Control of Engineering

Systems 3rd ed., New York, Cambridge

University Press, 2007, ch. 1.

