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Abstract: The ability to reason within a dynamical environment is of crucial importance in 

Artificial Intelligence. The present paper models nonmonotonic reasoning by means of a 

DCSP (Dynamic Constraint Satisfaction Problems) framework, taking advantage of the 

representation facilities of direct argumentation systems. The algorithm presented below 

applies dynamic backtracking for the approximate computation of the admissible semantics, 

which was used to define the concept of multiple diagnosis. The final application of our 

work is a system for medical diagnosis, that models its search space efficiently and 

dynamically, while confronted with sequential tests. It asserts and rejects beliefs in different 

component  elements of the diagnosed domain following a nonmonotonic schema which is 

very close to a human expert’s reasoning model. 

 

Keywords: clinical decision making, hybrid intelligent systems, direct argumentation 

systems, nonmonotonic reasoning. 

 

1. INTRODUCTION 

 
Medical diagnosis  represents a major challenge to 

the world of AI, due to its complexity and non-

typicality. 

 

A major drawback of the first-generation artificial 

intelligence programs  in medicine 

(INTERNIST/CADUCEUS,  MYCIN, PIP) comes 

from the fact they do not use a deep causal structure 

for the relationship between disorders and their  

symptoms, while for a human expert an explanation 

is seen as a deduction inferred on basis of a cause-

effect chain. An important consequence is that 

interaction among multiple disorders is impossible to 

approach, only by associations between phenomena, 

with no causal details.  

 

The problem of complex interactions occurs when 

multiple disorders are present in one and the same 

patient, and their symptoms unexpectedly interact. 

Even CASNET, with all its causal representation, has 

serious problems with interacting or overlapping 

symptoms, and therefore resumes its utility to single-

disorders cases, because of the difficulties with the 

probabilistic treatment of uncertainty and inference. 

 

The probabilistic approach to uncertainty is also to 

blame for the unappropiate tackling of contradictions. 

When two rules are in conflict, this is treated –
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likewise concordance- by adjusting the degree of 

trust in some related hypotheses. But in the real 

world reasoning, human experts have a much deeper 

and complex reaction to the detection of a 

contradiction: they reconsider previously accepted 

data, and/or add new possible hypotheses to the 

active set (i.e. those currently taken into 

consideration). The conclusion is that a probabilistic 

model is inherently inadequate to deal with 

contradictions, and a categorical approach is needed. 

   

Patil has completely replaced probabilistic measures 

with structural criteria in Abel (Patil, 1981), trying to 

surpass the difficulties described above. His system 

uses links of a special kind to model competition/ 

contradiction, and only categorical decisions are 

allowed. The system is based  on a hierarchically 

partitioned data representation defined by Lynch 

(Lynch, 1960) (conceptual maps
1
).  

 

Yet, the medical field is far too complex to 

completely give up probabilities, like Abel does. As 

structural and probabilistic measures complement 

each other, they should both be used in diagnosis. 

Moreover, the applicability of Abel in large fields is 

restricted, because general strategies are needed to 

initially pre-process extended medical contexts. 

Probabilistic / associative efficient types of reasoning 

would be useful  exactly during this phase of pre-

processing, in order to focus the search. The DiaMed 

system presented below combines probabilistic/ 

categorical reasoning, taking advantage of the 

qualities of both of them, and leading to a 

combinative hybridization (the same general 

architecture was used by CHECK). 

 

The present paper subsequently presents an original 

hybrid system for medical diagnosis (DiaMed). Its 

originality consists mainly of an original modeling 

and reasoning framework for diagnosis, although 

DiaMed is, at the same time, a possible continuation 

of the ideas in CASNET and CHECK systems. 

 

Section 2 is dedicated to the detailed presentation of 

the DiaMed system. Regarding the nonmonotonocity 

of diagnostic reasoning and the necessity of 

asymmetric attack relations, Section 2.2 introduces 

the modern formalism of direct argumentation 

systems, and suggests a new definition for multiple 

diagnosis making use of the argumentative  

                                                 
1
  “In approaching large maps it is recommended to 

work with partial images sets, which can be more or 

less inter-related or overlapped” (instead of a large, 

global image). 

 

admissible semantics. The section also presents the 

basis of an efficient computation for the admissible 

semantics using dynamic backtracking for dynamic 

constraint satisfaction problems (DCSP). An 

important contribution of this chapter is the 

translation of the dynamic testing mechanism for 

(medical) diagnosis into a dynamic constraint 

satisfaction problem. Moreover, we use an original 

arguments-based knowledge representation model for 

the medical field. We believe our paper is a pledge 

for direct argumentation systems and their 

applicability in difficult real-world problems. 

 

 

2. THE DIAMED HYBRID SYSTEM 

 

 

2.1. Introduction 

 

DiaMed (Diagnosis in Medicine) is a hybrid-

combinative system with two levels. Combinative 

hybridization of the type chosen here seemed the best 

choice,  not only for the reasons resumed above and 

further detailed in this section, but also because it 

was a good option when compared to, for instance, 

neuro-fuzzy or neuro-symbolic hybrids, with their 

curse of dimensionality and difficulties related to 

modeling interactive, dynamic problems (like 

medical diagnosis is). 

 

In DiaMed, uncertainty is modeled logically, by 

nonmonotonic reasoning. The problem of complex 

interactions is approached in a generative manner: 

composite hypotheses are built based upon 

admissible solutions to a dynamic constraint 

satisfaction problem- DCSP- (instead of an explicit 

codification of all possible composite hypotheses and 

their effects) (Minh Dung, 2006; Chesnevar, 2000). 

Admissibility is a theoretic-argumentative view of 

consistency, appropriate for a diagnosis problem (as 

we shall see following) (Caminada, 2007). This 

generative approach needs a causal model, in order to 

better understand possible interactions among 

different elements of the medical model as we have 

already emphasized. 

 

Therefore, composite hypotheses (i.e. multiple 

disorders at the same patient) are defined as covering 

admissible sets. Admissibility is defined through 

individual attack relationships, and allows us to 

dynamically compose hypotheses, dependently on a 

given context of manifested symptoms. Like in 

CASNET, CHECK or Abel, DiaMed is built around 

a causal knowledge representation. Complete causal 

models are not necessary, but only their restrictions 

to the nodes relevant for the decision process. 
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Although the architecture of DiaMed resembles 

CHECK, the implementation differs.  The first level 

implements hypotheses’ selection with an efficient 

associative method (it uses fuzzy decision functions 

to rank disorders) (Munteanu, 2005). The main 

advantage of these decision functions, compared to 

the law of evidence combination in CHECK resides 

in the fact they can accurately express a great variety 

of vague criteria (for instance, the majority, at least x 

out of n, a significant part of, etc.) 

 

The second level uses a deep causal model, restricted 

to the context of hypotheses selected at the first level, 

in order to discriminate and refine the final 

diagnostic, and to solve the conflicts generated – if 

any. A DCSP algorithm controls which constraints 

are active at a given moment, having the role to focus 

on interesting sub-parts of the model. Moreover,  this 

phase considers a complete and precise model (to the 

maximum possible extent), which represents 

exceptions in a natural and efficient way, and the 

reasoning scheme suits the nonmonotonicity of 

diagnosis. To this purpose, the second level uses the 

logical and symbolic methods of direct 

argumentation systems and CSP algorithms in order 

to refine and explain diagnostic results.  

 

  

2.2.  Knowledge representation 

 
The knowledge model of DiaMed contains causal 

associations between classes and their characteristics. 

Its components are described following. 

 

       The diagnostic classes (i.e. the diseases) are 

modeled by a special type of causal nets, with 

different kinds of nodes and arcs,  which describe the 

deep causal model. There exist three types of nodes: 

 

• root-nodes corresponding to classes (diagnostic 

hypotheses); they are primary deep causes of 

observed manifestations; 

 

• nodes related to deep manifestations 

(inaccessible or accessible only through 

expensive/ time-consuming/ invasive tests); 

 

• nodes related to shallow manifestations (easy to 

access or direct observations).      

 

The nodes of the net (either deep or shallow) can be 

of two kinds: necessary or supplemental. If a 

necessary node is infirmed by tests,  the diagnostic 

hypothesis which contains it is eliminated.  

 

Arcs linking the nodes can also be of  various types: 

 

• Necessary implications:   the cause always 

determines the effect; 

 

• Possible implications:   the cause may determine 

the occurrence of the consequence, but it is not 

compulsory; (this uncertainty comes from the 

model’s incompleteness: there exist certain 

elements/ conditions that influence the validity 

of the implication but which were not explicitly 

modeled); 

 

• Attacks (either bi- or unidirectional): these 

relations connect elements that cannot be 

simultaneously assumed “in” (i.e. true) in the 

case of one and the same system (i.e. patient, in 

the medical field). 

 

Each diagnostic class is defined by such a causal net 

that contains all possible elements related to the 

class, and these elements are organized in 

progressively shallow (i.e. accessible to direct 

observation) levels. Intermediary nodes between the 

root and the leaves are usually inaccessible or 

difficult to access (only through expensive, invasive, 

time-consuming tests). The degree of accessibility 

grows as we approach the leaves (Figure 2.1). 
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Fig. 2.1.The general structure of a causal net and a 

sub-net example  (d-disorder, i-intermediary 

inaccessible nodes, s –accessible manifestations/ 

symptoms) 

 

Definition. An argument  associated to a class is an 

instantiation of the causal net that defines the class. 

An instantiation of a causal net is a subset of its 

nodes that contains at least an observed manifestation 

(the rest of the nodes being assumed true).  

 

A natural and original definition for a multiple 

diagnosis is given below. 

 

Definition. A multiple diagnosis (i.e. a non-empty 

set of possible diseases for a given patient) is an 

admissible
2
 hypotheses

3
 set that covers all 

observations and is minimal with this property. 

                                                 
2
 Argument A is acceptable to the set S of arguments 

iff any argument defeating A is defeated by an 

 

Example. Let A={leukemia}, B={normal PT, PTT 

level}, C={medication affecting the PT, PTT level} 

be three arguments. The attack relation is described 

by the graph: A←B←C.  Then A is acceptable with 

respect to C, C being a defence of A against attack B. 

Consequently, {A,C} is an admissible set, and 

“leukemia” is a possible diagnostic within the context  

defined by C. 

 

Remarks! 
 

• P.M. Dung has made the remark that attack 

relations among arguments in defeasible 

reasoning only depend upon the assumptions 

(i.e. hypotheses, that have not been either 

confirmed or infirmed yet) the arguments are 

based on, and suggested a definition for 

argument as a deduction whose premises are all 

assumptions; moreover, argument a attacks 

argument b if a attacks an assumption b is based 

on. (An argument attacks an assumption α when 

the conclusion of a is the contrary not α of α). 

 

• An argument corresponds to the peculiar 

configuration of symptoms observed at a given 

patient, through which the disease manifests 

itself, and which can vary from patient to patient. 

Each argument can be viewed as an instantiation 

of a class. It can dynamically be added/ deleted 

from the current context, depending on the 

related  attack relations. 

 

Definition. The abstracted attack graph is, simply, 

the attack graph considered between the arguments 

that contain the attacking nodes, ignoring their 

internal structure of nodes (we suppose there are no 

attacking nodes within one and the same  argument). 

 
The present model uses three types of attacks. Firstly, 

two alternative causes for the same effect are 

attacking each other (see Figure 2.2.) (the idea being 

that only one of them actually produced the effect, 

and it is useless to consider them both as “in”). The 

situations that might contradict this assumption are 

rare, if ever. We haven’t met such an exception, 

within a context of 30 disorders chosen for testing 

different examples. 

 

 

                                                                         
argument in S. A set S of arguments is admissible iff 

any argument in S is acceptable to S. 

 
3
 A hypothesis is any active disease, which can be, in 

particular, associated to the argument that sustains it. 
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                  Fig. 2.2. Example of causal dependencies 

 

 

Secondly, attacks model the following situation: if a 

disorder b can manifest itself under the mask of 

disorder a, such that b is often confused with a, then 

we consider that b attacks a. The idea here is that a is 

initially assumed true, but supplementary tests infirm  

a and confirm b. This attack comprises experts’ 

experience about some possible temporal order for 
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the occurrence of hypotheses within a reasoning 

chain. For instance, “congestive heart failure” attacks  

“cirrhosis”, because sometimes “heart failure” is 

confused with “cirrhosis”.  

 

 Finally, the third kind of attack is given by logical 

inconsistency: if it is necessary to have an affected 

heart pressure/ volume in order to conclude heart 

failure, then we consider “normal heart pressure/ 

volume” as a direct attack to heart failure (abstracting 

other internal network elements). But there are 

exceptions to this situations that make things even 

more difficult; for instance, in hypothyroidism we 

have symptoms of heart failure, although pressure or 

volume were not affected (and this is because the 

generating mechanism is different, originating in 

hypocalcemia), hence we consider that 

hypothyroidism directly attacks “normal heart 

pressure/ volume”, within the context “heart failure”. 

In other words, hypothyroidism is a defence of “heart 

failure” against “normal heart pressure/ volume” (see 

the attack graph in Figure 2.3). This exception is, as a 

matter of fact, an attack of the first type - “alternative 

cause” (and therefore will not receive a distinct 

representation in our model). 

 

 

Fig. 2.3. The attack graph for the firstly selected 

context 

 

 
2.3. Problem modeling within a DCSP framework 

 

Notations. 

 

• The diagnostic hypotheses: d1,…,dN (N classes/ 

diseases);  

• Their related causal nets: C1,…,CN; 

• Arguments: A1,… AL (where L represents the 

number of possible instantiations of causal nets); 

• Ip={d1,…,dt}is the set of selected hypotheses; 

• Confirmed_Manifestations={mc1,…,mck} – the 

set of confirmed manifestations (that were 

proved being true); 

• Infirmed_Manifestations={mi1,…,mip} –the set 

of infirmed manifestations (that were proved 

being false); 

• Context= Confirmed_Manifestations ∪  

Infirmed_Manifestations –the complete set of 

symptoms either confirmed or infirmed during 

the testing process;   

• Ga – the attack graph restricted to the set Ip; 

• The set Ip is partitioned into: 

Infirmed_hypotheses, Considered_hypotheses, 

New_hypotheses. 

 

The algorithm starts with an initial set 

Confirmed_Manifestations,  selects hypotheses 

through fuzzy decision (the abductive phase of 

hypotheses’ generation), and it ends up with a set of 

active hypotheses:{d1,…,dt}, and their associated 

causal nets C1,…,Ct. Firstly, we compute the state of 

every node linked through deterministic relations to 

the confirmed/ infirmed nodes (for instance, a node 

attacked by a “true” node–when the attack is not 

defensible-, will surely be “false”). The rest of the 

nodes from the activated causal nets represent the set 

of active variables Active_Var={V1,…,Vp}, on which 

an adapted version of dynamic backtracking for 

DCSP (Verfaille, 1994) is applied (during the 

consistency-check phase). Active variables are 

usually associated to defensible nodes: their status is 

“in” (assumed true) or “out” (assumed false) at a 

certain moment, but they can be 

contradicted/reinstated later during the algorithm. 

The active constraints of the CSP algorithm – 

Active_Constr- are those that contain at least one 

active variable. As already defined, a multiple 

diagnosis is a minimal solution- i.e. a minimal, 

admissible, completely covering set – to the CSP 

problem. We have made things easier in practice by 

selecting into Active_Var only the diagnostic 

hypotheses themselves. 

 

The evidence of tested nodes is kept in 

Confirmed_Manifestations set (which contains 

diagnostic hypotheses and their supporting symptoms 

and is used for the final explanation) and 

Infirmed_Manifestations - used for keeping track of 

already infirmed nodes, in order not to reconsider 

them again. 

    

The three possible types of implications in a causal 

net are represented as binary constraints (this 

representation was inspired from  BCP- Boolean 

Constraint Propagation- problems): 
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• Necessary implications: a→b :  Cab={00,11,01}; 

• Attacks: aa b:   Cattack={10, 01,00}; 

• Possible implications do not restrict the domain 

of values of any variable  ({00,01,10,11}). 

 

Let: 

• Cons(v)= constraints which contain variable v; 

• Var(c)= variables occuring in constraint c. 

 

The set of current constraints  Active_ Constr is 

naturally defined as: 

 

)(_
_

vConsConstrActive
VarActivev∈

∪= (2.1) 

 
Definition. A solution to a diagnostic problem is a 

complete and consistent (admissible) assignment of 

truth values to all the active variables (i.e. activated 

through the selection of some particular hypotheses), 

which covers all confirmed manifestations. A 

solution is minimal if it has a minimum number of 

nodes, while still respecting the previous conditions. 

This definition corresponds to the definition of 

multiple diagnosis above. 

           

 

2.4. Fuzzy decision –based selection of hypotheses in 

DiaMed 

 
The phase of selection of relevant hypotheses from a 

large context should use efficient techniques (rather 

than precise and transparent ones), in order to quickly 

reduce the search space. The selection of hypotheses 

in DiaMed uses a model based upon fuzzy decision 

functions (Munteanu, 2005).  

 

 

2.5. Discrimination of hypotheses and argumentation 

of diagnostic decision in DiaMed 

 
The present section describes the algorithm used by 

the discrimination/ explanation level in DiaMed, 

which is an original adaptation of the algorithm in 

(Verfaillie, 1994), such that the dynamics of 

constraints is governed by the results from the 

medical tests. A relevant example ends the section. 

 

 

Algorithm 

Dynamic Backtracking_DCSP 

_for_medical_diagnosis (Vn, Va, C) 

 
1.Order the Active_Var set starting with the most 

constrained variables (this is a well-known heuristic 

to make CSP algorithms perform better). As attack is 

the most restrictive constraint, place variables which 

take part in attacks first; 

 

2.We have adapted the dynamic backtracking 

algorithm for DCSP from (Verfaillie, 1994) to 

compute the diagnostic as follows below (Active_Var 

is the set of variables, Active_Constr are their 

associated constraints). (The differences to the 

original version are marked in bolded letters). 

 

(In, out nodes =defensible nodes; i.e. they can change 

state subsequently during computation). 

 

Initializations 

Let Va=φ  be the set of assigned variables, Vn= 

Active_Var the set of unassigned variables, C= 

Active_Constr, the set of constraints that contain at 

least one variable from Active_Var; initialize 

variables’ Domains  with the set {in,out}. 

 
Vtotal= the set of decision-relevant hypotheses and 

nodes; 

 

1. If  (Vn=Ǿ) return Va (assigned variables) 

        if Va is an admissible complete covering of 

present manifestations/ symptoms 

                                   then print the solution; 

         if Va is not admissible  

   Inadmissible_Solutions= Inadmissible_Solutions 

∪ Va; 

         If Va admissible but incomplete                                 

Partial_Solutions=Partial_Solutions ∪ Va;  

(memorized for a potential subsequent extension) 

 
    Else  

          Pick a variable v from Vn; 

          Current_Domain(v)= Domain(v)- (Values 

inconsistent with Va, with respect to C) 

          If (Current_Domain(v)= Ǿ) 

                Let Ve be an explanatory explanation of the 

conflict (i.e. a set of variables in conflict with v) 

                If (Ve= Ǿ) (we do not have a solution) (*) 

                      New_Data=Test; 

                      Repeat the Selection of hypotheses 

(through fuzzy decision) using the New_Data set; 

Change the working Context: 

    CA = constraints that define the new context of 

hypotheses, 

    CS = constraints related to those specific 

contexts in which a necessary node was attacked 

by some node associated to one of the symptoms 

recently tested; 
    

 Let V be the set of variables that contradict at least 

one constraint from CA  

        Un-assign variables from V: 
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                     Vn =Vn ∪ V; Va =Va- V;  

        Delete eliminatory explanations which contain 

variables from V; 

        Delete eliminatory explanations which contain 

variables that contradict at least one constraint from 

CS; 

       GOTO1; (Restart from the begining) 

OR: try to extend inadmissible and partial 

solutions, keeping Va fixed and working only with 

Vn. 
         Else  

         Un-assign v’ –the most recent variable from Ve   

                         Vn =Vn ∪ {v’}; Va =Va- {v’};  

         Create an explanation for the elimination of 

value val’ = {Ve – v’}; 

         Delete eliminatory explanations which contain 

v’; ( → refresh the domains of all variables) 

                   GOTO 1. 

      Else  

             For each (val∈Current_domain(v)) 

            v←val; Va =Va ∪  v; Vn = Vn-{v}; GOTO 1. 

 

We delete a node from the Context when it appears 

as false in a (partial) solution. Only the solutions 

whose true nodes’ total weight exceeds a given 

threshold are kept in a list and further taken into 

consideration, this heuristic being very useful in 

making the algorithm perform better faster. 

 

 

Example 

 
1.Let’s suppose we initially observe the following  

symptoms (see Figure 2.2 and the Appendix):  

 

Confirmed_Manifestations ={anorexia, arrhythmias, 

ascites, dyspnea, edema, fatigue, muscular weakness, 

anemia of chronic disease}. DiaMed selects, through 

fuzzy decision (Munteanu, 2005),  the following 

disorders (hypotheses), which have accumulated a 

score greater or equal to the chosen threshold (i.e. 

0.2): 

 

• Angina pectoris  0.51  (BI1) 

• Cirrhosis  0.22  (BH1) 

• Hypothyroidism  0.25  (BE3) 

• Myocardial infarction  0.26  (BI2) 

• Congestive heart failure  0.29  (BI3) 

• Myocarditis  0.70  (BI4) 

• Pericarditis  0.34  (BI5) 

 

(The codification of diseases used by the 

implementation is listed between the brackets). A 

special-status node is also automatedly selected by 

our algorithm into the list of hypotheses: “normal 

heart pressure/ volume” (SI32). Its special status is 

given by the fact that the node occurs in the attack 

relations that imply selected hypoptheses, without 

being a hypothesis itself, or a symptom of a disorder. 

(Figure 2.3  presents the attack graph associated to 

the selected context). 

 

The algorithm computes three minimal admissible 

covering solutions: 

 

1. Hypothyroidism, congestive heart failure, 

myocarditis (BE3, BI3, BI4) 

2. Hypothyroidism, congestive heart failure, 

myocardial infarction (BE3, BI3, BI2) 

3. Hypothyroidism, congestive heart failure, angina 

pectoris (BI1, BI3, BE3) 

 

Suppose the user (physician) is not satisfied about the 

results and wishes to further complete the 

investigations with new tests. At this moment, a list 

of possible necessary symptoms for the selected 

disorders is  displayed, to be eventually infirmed and 

narrow down the context. To this purpose, a list of 

necessary symptoms possible for the current context 

is built by the program (this being the only automatic 

clue to help the testing process). Necessary 

symptoms/ manifestations have a preferential status 

over supplementary ones because they can restrict the 

search space, if denied (Figure 2.3). 

 

The new test results lead to Infirmed_Manifestations 

={“chest pain sensitive to nitroglycerin”, “chest pain 

insensitive to nitroglycerin”, “gallop rhythm”, 

“pericardial friction rub”}, which excludes from the 

list of possible nodes the set {BI1, BI2, BI4, BI5}- 

those disorders whose certain necessary 

manifestations are missing at the given patient (see 

Appendix). The infirmed manifestations support 

“normal heart pressure/ volume”, which defends the 

hypothesis „cirrhosis”. The presence of  “elevated 

Mi2, SRP antibodies” is furthermore discovered. 

This symptom adds “Polymyositis” (BREUM3) to 

the list of possible hypotheses (its score being now 

0.45).  The attack graph becomes the one in Figure 

2.4. 
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     Fig. 2.4. The attack graph for the secondly 

selected context 

 

The following phase of the algorithm tries to extend 

inadmissible assignments, generated at the previous 

step, with defences. For instance, in the present 

example, it starts with the inadmissible assignment 

{“cirrhosis” “in”, “normal heart pressure/ volume” 

“in”} and gets an admissible assignment within the 

new context (although not completely covering): 

{“cirrhosis” “in”, “normal heart pressure/ volume” 

“in”, “polymyositis” “in”}. This means that the node 

BREUM3 is a defence of the set {SI32, BH1}, 

against {BI3, BE3} –the latter have been activated by 

the new evidences. In conclusion, the system 

manages to follow very closely the human expert’s 

non-monotonic steps of reasoning, through a 

dynamic simulation of the search space, which is 

controlled by sequential phases of testing and denial 

of previously assumed hypotheses. 

 

                      

3. CONCLUSIONS AND FUTURE WORK  

 

The DCSP-based approach from Section 2.5 

represents an efficient translation of the dynamic re-

modelling of the working context, which is directed 

by the evidences resulted from tests. This re-

modelling focuses reasoning on limited sections of 

the medical domain. The activity constraints add or 

delete variables to/from the problem according to the 

context of selected hypotheses, which is dynamically 

tuned through testing and through the application of 

domain-dependent rules. These activity constraints 

are implicitly defined by the fuzzy decision functions 

that perform the selection and by the arguments (i.e. 

active instances of causal nets). 

 

Dynamic backtracking for DCSP is an incremental 

method, which keeps the valid part of a solution 

when moving to different parts of the model 

(efficiency). Moreover, the system is flexible: it 

generates hypotheses even when provided only with 

insufficient information (they shall be retracted if 

further information is contradictory). Our algorithm 

also shows how DCSP can approximate the 

admissible semantics in a tractable manner. The 

choice for the dynamic version facilitates a 

contextual computation of admissibility, which is 

naturally context-dependent. 

 

Multiple diagnosis is originally defined in terms of 

arguments (using the admissible semantics), and 

arguments are adapted to match the medical field, by 

structuring information and grouping disorders 

according to possible interactions. Because 

arguments were especially created to model human 

reasoning confronted with uncertainty and 

incremental evidence gathering, they are appropriate 

for iterative belief revision which is a main 

characteristic of medical diagnostic reasoning, and 

they can handle the interactivity of sequential testing 

which interleaves with hypotheses’ generation (see 

also (Caminada, 2006), (Rahwan, 2003)). 

 

The nonmonotonic mechanism of belief generation 

and cancellation is reflected in the addition and 

deletion of constraints within DCSP. The main 

advantage of this method over CHECK, for instance, 

resides in its tractability, as compared to the 

computational approaches of indirect abduction.  

 

The original approach of DiaMed, which uses 

argumentative non-formal logic and DCSP 

algorithms, can be very useful during the phase of 

discriminating among alternative diagnoses. “Further 

research in nonmonotonic reasoning should focus on 

computational aspects, because it is only so that 

nonmonotonicity can have an impact on Artificial 

Intelligence and an utility for real-world problems” 

(Brewka et al., 1997).  

 

The system has to be further improved. A great part 

of the decisions associated to testing are still 

delegated to the user (which maybe is not a drawback 

after all). Also, the medical model needs to be 

completed by a team of human experts, in order to 

test the system on a significant amount of real data. It 

would also be worth to study the impact intelligent 

techniques can have on propositional inference in 

general. 
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APPENDIX 

 

The weights of symptoms within disorders’ definitions 
 

ANGINA_PECTORIS  

Symptom     weight 

ARRHYTHMIAS 0.7 

DYSPNEA 0.8 

CHEST_PAIN_RELIEVED_BY_NITROGLYCERIN  0.9 

NAUSEA/VOMITING 0.5 

  

CIRRHOSIS  

  

CRONIC_DISEASE_ANEMIA  0.6 

ANOREXIA 0.6 

ASCITES 1 

ENCEFALOPATHY 0.7 

ELEVATED_FIBRINOGEN 0.7 

LEUCOPENIA 0.7 

MELENA 0.7 

FATIGUE 0.5 

PROTEINURIA 0.8 

VARICEAL_BLEEDING 1 

LOW_ALBUMINE_SYNTHESIS 0.8 

SPLENOMEGALIA 0.9 

HIGH_SERUM_TRANSAMINASES(TGP,TGO) 1 

LIQUID_INSIDE_ABDOMEN 1 

THROMBOCYTOPENIA 1 

  

HYPOTHYROIDISM  

  

BRADYCARDIA 0.6 

EDEMA 0.7 

ELEVATED_MUSCULAR_ENZYMES(CK…) 0.8 

WEIGHT_GAIN 0.8 

MENORRHAGIA 0.8 

FATIGUE 0.8 

COARSE_HAIR 0.6 

DRY_SKIN 0.6 

MUSCULAR_WEAKNESS 0.6 

TACHYCARDIA 0.6 

LOW_SERUM_T3,T4 1 

HIGH_SERUM_TSH 1 

  

MIOCARDIAL_INFARCTION  

  

ARRHYTHMIAS 0.8 
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DYSPNEA 0.9 

CHEST_PAIN_NOT_RELIEVED_BY_NITROGLYCERIN  1 

ELEVATED_FIBRINOGEN 0.6 

NAUSEA/VOMTING 0.5 

PANIC 1 

LOW_BLOOD_PRESSURE 0.7 

HIGH_SERUM_TRANSAMINASES(SGOT) 0.8 

  

CONGESTIVE_HEART_FAILURE  

  

CRONIC_DISEASE_ANEMIA 0.5 

ANOREXIA 0.5 

ASCITES 0.7 

PULMONARY_VASCULAR_CONGESTION 0.7 

ELEVATED_VOLUME_IN_CENTRAL_VESSELS_WHEN_LAYING 0.6 

DYSPNEA 0.9 

PAROXYSTIC_NOCTURNAL_DYSPNEA 1 

EDEMA 0.7 

HEMOPTYSIS 0.5 

BIG_HEART  1 

FATIGUE 0.5 

PULMONARY_RALES 1 

GALOP_RHYTHM 1 

TACHYCARDIA 0.7 

LIQUID_INSIDE_PULMONARY_ALVEOLA 0.7 

JUGULARY_TURGESCENCE 0.9 

NOCTURNAL_COUGHING 0.8 

  

MYOCARDITIS    

  

ARRHYTHMIAS 0.7 

DYSPNEA 0.8 

FATIGUE 0.7 

GALOP_RHYTHM 0.9 

  

PERICARDITIS  

  

ASCITES 0.6 

DYSPNEA 0.8 

CHEST_PAIN_AT_INSPIRATION 0.8 

EDEMA 0.7 

HIGH_FEVER 0.7 

PERICARDIAL_RUBBER 1 

HEPATOMEGALIA 0.6 

JUGULARY_TURGESCENCE 0.9 

  

 


