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Abstract: Analog Parallel Architectures like Cellular Neural Networks (CNN’s) have 

been thoroughly studied not only for their potential in high-speed image processing 

applications but also for their rich and exciting spatio-temporal dynamics. An 

interesting behavior such architectures can exhibit is spatio-temporal filtering and 

pattern formation, aspects that will be discussed in this work for a general structure 

consisting of linear cells locally and homogeneously connected within a specified 

neighborhood. The results are generalizations of those regarding Turing pattern 

formation in CNN’s. Using linear cells (or piecewise linear cells working in the central 

linear part of their characteristic) allows the use of the decoupling technique – a 

powerful technique that gives significant insight into the dynamics of the CNN. The 

roles of the cell structure as well as that of the connection template are discussed and 

models for the spatial modes dynamics are made as well. 

Keywords: analog parallel architectures, Cellular Neural Networks, spatio-temporal 

dynamics, spatial filters 

1.  INTRODUCTION
1
 

Spatio-temporal dynamics leading to pattern 

formation have been thoroughly studied in various 

fields including autonomous cellular neural networks 

(CNN’s) (Turing, 1952; Chua, and Yang, 1988 a,b; 

Murray, 1993; Roska, and Vanderwalle, 1993; 

Crounse and Chua, 1995a; Chua, et al., 1995; 

Crounse and Chua, 1995b; Roska and Chua, 1995; 

Roska, et al., 1995;  Zarandy and  Roska , 1997; Shi, 

1998; Bing, et al., 1998; Frasca, et al., 2004; Arena, 

et al., 2004). Among various types of patterns, 

Turing ones have been studied in connection to an 

architecture consisting of two-port second order cells 

sandwiched between two resistive grids (Goras, et 

al., 1995; Goras and Chua, 1995; Goras, 2002; Goras 

and Chua, 1996; Teodorescu, and Goras, 1997; Goras 

and Chua, 1997a,b; David, et al., 2004; Ungureanu, 

                                                           

1This work has been accomplished with financial support from 

CNCSIS, grant A-226-2007. 

et al., 2006). The specific feature of Turing patterns 

is that the isolated cells are stable while the dynamics 

of the array can exhibit unstable spatial modes. If the 

cells are piecewise linear, a powerful method of 

investigation is the decoupling technique basically 

consisting of a change of variable chosen according 

to the boundary conditions. The transformed 

differential equations corresponding to each spatial 

mode are decoupled, parts of them having unstable 

solutions – a necessary condition for pattern 

formation. The competition of the unstable spatial 

modes leads to a pattern which depends on the shape 

of the dispersion curve, initial conditions and on the 

nonlinearity of the cells characteristics. Of course, 

the method is valid only for the central linear part of 

the cell characteristics but offers useful insight on the 

shape of final pattern obtained after the nonlinearity 

has been reached (Goras and Chua, 1995). 

 

Basically, two mechanisms were used so far to limit 

the pattern evolution: either the nonlinearity of the 
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cell characteristics or “freezing” the transient 

typically before any nonlinearity has been reached.  

If the emerging pattern is frozen before the signals 

leave the central linear part of the cell characteristics, 

the CNN behaves as a spatial time variable filter, the 

spatial frequency response being dependent on the 

moment the transient has been stopped (Shi, 1998; 

Goras, 2002). Various aspects regarding the spatio-

temporal dynamics of two-grid coupled CNN’s and 

their applications as texture classification have been 

reported in (Goras and Chua, 1996; Teodorescu, and 

Goras, 1997; Goras and Chua, 1997a,b; David, et al., 

2004; Ungureanu, et al., 2006; Goras, et al., 2007; 

Alecsandrescu and Goras, 2008). 

The two-grid coupled CNN is a rather special case of 

homogeneous parallel architecture, derived from the 

reaction-diffusion model proposed by Turing. The 

basic idea of having arrays with one or perhaps 

several bands of unstable spatial modes can be 

implemented using a more flexible architecture. Even 

though from a theoretical point of view architectures 

with any degree of complexity can be imagined, 

implementation constraints make large structures 

with cell order and/or neighboring radii higher than 

two being rather unrealistic. 

2.  THE BASIC ARCHITECTURE 

For the sake of simplicity, in the following we 

consider a 1D array with the architecture shown in 

Fig.1. Generalizations to two dimensions are 

straightforward. The array consists of linear (or 

piecewise linear, working in the central linear part) 

cells represented by admittances denoted by Y(s) and 

coupled between them as well as with the inputs, 

using voltage controlled current sources over a 

neighborhood of radius r, Nr. The template elements 

have been denoted by Ak for inter-cell connections 

and by Bk for the sources connections. The 

neighborhood dimension has been chosen the same 

for both cases, a fact that does not restrict the 

generality as any of the template coefficients might 

be zero. 

 

Fig.1. 1D array architecture. 

Considering /s d dt↔ , Y(s) is a linear integro-

differential operator of the form: 
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in particular a real-positive function where ( )Q s  

and ( )P s  are polynomials in the variable s.  

 

In this case, the equations that formally describe the 

network are: 
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Obviously, the above relations represent a set of 

coupled integro-differential equations which can be 

elegantly solved by the decoupling technique. 

 

3. THE DECOUPLING TECHNIQUE  

In the following we will use the decoupling 

technique (Goras and Chua, 1995) to study the 

spatio-temporal behavior of the network. 

We consider the change of variables 
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where the M functions ),( miMΦ  are orthogonal 

with respect to the scalar product in C
M

, i.e., 
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so that ˆ
mx and ˆ

mu  can be expressed, by means of 

the inversion formulas: 
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where  

(8)
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For ring boundary conditions ΦM(m,i) have the form 
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Thus ( , ) M i mΦ  are eigenfunctions of the spatial 

operators represented by the A and B templates and 

KA(m) and KB(m) are the corresponding spatial 

eigenvalues which are complex in general and 

depend on the parameters of the template and on the 

mode. For symmetric templates, A-k=Ak, the spatial 

eigenvalues are real. 
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In particular, for symmetric templates with r=1 
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with similar expressions for KB(m). 

 

Using the above change of variable and the 

properties of ( , ) 
M

i mΦ , equations (3) become 

successively 
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If we take the scalar product of both sides of the last 

equations with ( , )M n iΦ  and then replace the index 

n with m, we have 
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which can be written symbolically either 

 

(18) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( )
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or 

(19) ( ) ( )ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
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m mK KQ s x t P s x t P s u t= +  

and corresponds to the differential equation satisfied 

by the m-th spatial mode. Thus, the equations have 

been decoupled, the new variables being the 

amplitudes of the spatial modes of the cell signals. 
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4.  TRANSFER FUNCTIONS AND DISPERSION 

CURVES 

The transfer functions that can be associated to 

equations (18,19), valid for the magnitude of each 

spatial mode are  
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where ˆ ( )
m

x s  and ˆ ( )
m

u s  are the Laplace transforms 

of ˆ ( )
m

x t  and ˆ ( )
m

u t  respectively.  

The transfer functions correspond to a feedback 

system for each of the modes as depicted in the 

figure below where Z(s)=1/Y(s). 

 

 

 

 

 

Fig.2. Feedback schematic for the spatial mode m 

The characteristic polynomial of the m-th mode is 

  

(21) ( )( ) ( ) ( )
A
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Thus, the stability and dynamics of the spatial modes 

will depend both on the A-template eigenvalues and 

on the cell admittance Y(s)=Q(s)/P(s). The spatio-

temporal dynamics of the array can be studied using 

classical methods from feedback/control theory such 

as the root locus and Nyquist criterion and, of course, 

the Routh-Hurwitz test, all valid for each of the 

spatial modes, conveniently modified for non-

symmetric templates. 

For the particular case Y(s)=s, (i.e., Q(s)=s, P(s)=1) 

and  Bk=0 we  obtain  the  following  set  of  

decoupled autonomous first order differential 

equations: 
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The roots of the characteristic equation are s=KA(m), 

so that the dispersion curve is a straight line with 

respect to KA.  

 

For Y(s)=s+1 we obtain a similar equation (the -1 

constant can be always absorbed by A0 in KA(m): 

 

(23) ( )
ˆ ( )

ˆ1 ( ) ( ) 0,..., 1m
A m

dx t
K m x t m M

dt
= − + = −  

 

The roots of the m-th characteristic equation are 

thus sm=-1+KA(m), so that, again, the dispersion 

curve is a straight line with respect to KA(m) but not 

with m. 

 

KA(m) has the expression 
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for second order neighborhood. For this last case, 

the roots of KA(m)=0 are: 
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When real, the above roots represent the 

intersection of the dispersion curve with the 

abscissa axis in the hypothesis of a continuous 

variation of m.  

 

Thus, if the quantity under the square root is 

positive and the module of the argument of the 

arcos function is less than unity, the array might 

have poles on the positive real axis of the complex 

plane on the condition that there is at least one 

integer m in the domain of unstable modes, i.e., for 

which KA(m) is positive. In such a case the unstable 

spatial modes will increase according to their 

weight in the initial conditions and/or input signal 

and the value of the (positive) temporal eigenvalues, 

while stable modes will decrease and finally vanish. 

The dynamics of the array can be stopped before 

any nonlinearity has been reached. In this way a 

time dependent spatial filter is obtained. 

 

An example of a dispersion curve KA(m) showing a 

band of unstable modes is given in Fig.3. 
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ˆ ( )
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Fig.3. Dispersion curve for A0=-0.5, A1=-0.5, A2=-

0.5, M=100 exhibiting a band of unstable modes. 

Note that the dispersion curve is significant for 

values of m less than M/2 as the complex 

exponential for m>M/2 combine to those with 

m<M/2 to give cosine functions according to Euler 

formulas.  

 

For the particular A-template A0=2 and A±1=-1,  

 

(28) 22
( ) 2 2cos 4sinA

m
K m m

M M

π π
= − =  

 

a result identical to that obtained in the case of two-

grid coupled CNN’s where the spatial operator is the 

discrete Laplacean (Goras and Chua, 1995). 

 

5.  CONCLUSION 

The spatio-temporal dynamics of analog parallel 

architectures represents an interesting and intriguing 

behavior which seems to be worthwhile further 

studied both from the theoretical and applications 

points of view. In this work, analytical results 

concerning the spatio-temporal dynamics of a general 

class of homogeneous arrays have been presented. 

They are based on the decoupling technique, which, 

although intrinsically linear, give significant insight 

for pattern formation as well, i.e., for the equilibrium 

points stabilized after the nonlinearities of the cell 

characteristics have been reached when the cells are 

piecewise linear or when the dynamics has been 

stopped before any nonlinearity has been reached. 

The method puts into evidence the dynamics of the 

spectrum of the initial conditions with respect to 

some discrete spatial orthogonal functions dependent 

on the boundary conditions. The most interesting 

behavior corresponds to the case when at least one 

spatial mode is unstable. In certain cases this 

principle can be used for pattern recognition and 

feature extraction on the basis of mode competition 

and spatial selectivity. The dynamics of the spectral 

components can be studied using the powerful results 

of linear feedback theory. Preliminary results 

regarding the effect of the nonidealities of the array 

parameters show that the dynamics is qualitatively 

robust. 
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