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Abstract: The paper investigates the behavior of digital PID self-tuning controllers 
(STC) in different structures of the control loops used in adaptive systems. In the two 
phases of this type of systems which use a  STC-PID, the first phase, i.e. the task of 
recursive identification of the plant model parameters, is used a regression (ARX) 
model with the recursive least squares method.  Because the quality of process model 
depends on the order of the ARX model and of the sample period (Ts), the digital PID 
parameters are functions of these variables and, supplementary, of continuous-time PID 
parameters and of the control loop structures used in the adaptive system (although, not 
so largely as the firstly three variables). To see the latter influence, in this paper are 
considered two control loop block diagram, and for simulations - three different 
processes (stable; with no minimum phase; unstable), and some simulations with 
different , ,T

s n
! "  . The PID controller design method used to obtain the specs desired 

for control loop dynamic behavior was the pole assignment method of the loop.  
 
 

Keywords:  STC- PID adaptive systems, different feedback loop structures, simulation, 
specs comparation. 

 
 
 
 
 
 
 
 

1. INTRODUCTION 
 

In recent years, the theory of adaptive control 
has made more and significant developments. After 
[1], the basic approaches to the problem of adaptive 
control are gain-scheduling (GS), model-reference 
adaptive control (MRAC), self-tuning controllers 
(STC) and dual control (DC).  

If the estimates of the process parameters are 
adjusted and the controller parameters are obtained 
from the solution of a design problem using the 
estimated parameters, the system is viewed as an 
automation of process modeling and design. In this 
case the process model and control design are 

updated at each sampling period. This controller is 
called self-tuning controller (STC) or self-tuning 
regulator (STR) because it identifies unknown 
processes firstly, and then synthesizes the control 
(i.e. adaptive control with recursive identification). 
 Hitherto, the most useful “STC results” have 
been achieved, mainly, in SISO systems, for which 
were designed some stable algorithms with different 
complexity.  
Depending on the nature of the controlled process 
and on the general task of optimal adaptive control 
with recursive identification, the STCs can be 
implicit or explicit. In the STCs where the 
identification process does not serve to determine 
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estimates of the process model parameters, but are 
used recursively to estimate the controller parameters 
directly, they are referred as being implicit (Fig. 2). 
Consequently, when the STCs use a synthesis from 
estimates of the process model parameters (indirect 
identification), these are called explicit. (Fig. 1).  
 In any adaptive system, both phases 
representing recursive identification and controller 
parameter calculation are valid only at the moment 
when the STC is being set up, i.e. during the 
adjustment phase. After the STC has been adjusted, 
these are “non-valid” because the identification is 
switched off and the system is controlled with fixed 
parameters. 

In adaptive control system both task of 
identification and control synthesis have with the 
same level of importance. 
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Fig. 1:  Block diagram of an explicit STC (with direct 
identification) 
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Fig. 2: Block diagram of an implicit STC (with 
indirect identification)  
 
As a result, in the majority of practical cases where 
STCs are designed and used to estimate their 
parameters is used an ARX regression model. Much 
more, the least square method described in [13, 8], 
has given the best result in on-line estimation of the 
ARX parameters [10, 3, 1, 6]. 
In the following, the paper has the intention to asses 
the difference between the behavior of a STC derived 
with a standard block diagram of a closed loop 
(Fig.3, with 1DOF) and the behavior obtained with a 
different (better) block diagram (see Fig. 4, with 
2DOF). In the above both cases, the STCs and closed 
feedback loops are based on the poles assignment of 

the loop. Using suitable pole configurations, it is 
possible to fulfill the specs for stability and a desired 
closed loop-response (as overshoot, damping factor, 
rise-time etc.). 
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Fig. 3: The first block diagram of a standard control 
loop with STC-PID controller, named with a one 
degree of freedom (1DOF) 
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Fig. 4: The second block diagram of a control loop 
with STC-PID controller, derived from the structure 
with two degree of freedom (2DOF) [12] 
 
2. STANDARD CONTROL LOOP WITH STC PID 

DIGITAL CONTROLLERS 
 
 Usually, the continuous-time PID controller 
equation from Fig. 3 or Fig. 4 is, [12, 2, and 3]: 
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u(t) being  the controller output, y(t) - process output 
(controlled/ manipulated variable), e(t)- tracking 
error and w(t)- the reference signal (set point); KP, TI 
and TD are the controller parameters, respectively 
proportional gain, integral time constant and 
derivative time constant. 
 Using the Laplace transformation in  (1), we 
obtain the transfer function of this controller: 
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As in [9, 5, 4, and 6], using a (small) sampling 

period to discretize the integral and derivative 
components of (1), can be obtained the two digital 
forms of the PID algorithm: 

 
i) the position algorithms of the PID 

controllers (such named because it final output is the 
manipulation, also know as the control actuator 
position): 
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where Ts  is the sampling time (period) of 
discretising the integral and  derivative of 
continuous-time error e(t), at points e (kTs),  k = 
0,1,2,3,…. 

To discretize the derivative component of (3), 
the most algorithms use a difference of the first order 
(two-point, backward difference) and to approximate 
the integral (by simple summing) are used three 
methods: (a) forward rectangular; (b) backward 
rectangular and   (c) trapezoidal one (more 
accurate). However, all three algorithms are called 
nonrecurrent algorithms, because all previous error 
values e (k-1), i = 1, 2, k, have to be known to 
calculate the integral, and after the controller action. 

ii) velocity algorithms or incremental 
algorithms for the PID controllers are algorithms 
which calculate the increment (the change) Δu (k). 
They can be determined from (3) by obtaining u (k-1) 
from u (k), and substracting the resulting expressions. 
The recurrent relation u(k) = Δu(k) + u(k-1) used in 
(3) is 
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and, in general form: 
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Depending on the three methods used to 
approximate the continuous-time function by 
sampling periods Ts of the constant function (step, 
rectangle, i.e. forward rectangle, backward 
rectangular or trapezoidal method), can be obtained 
three different incremental controller parameters  qo, 
q1, q2 , as functions of  KP, TI, TD and Ts parameters:  
 
qk= f (Kp, TI, TD ,Ts),  k = 0, 1, 2. (6) 
 
For example, in the recurrent relation (5) obtained 
from (4), the controller parameters are:  
 
q0 = Kp (1+Ts /TI, + TD /Ts), 
q1 = - Kp (1+2TD/Ts), (7) 
q2=KpTD/Ts                                                               
 

 Much more, these parameters are functions not 
only as in (6), but depend of the discretization 
method, and of the closed loop block diagram.  
 
The characteristic polynomial of the standard control 
loop with a STC 

The discrete transfer functions of the controlled 
process and PID controller are (see Fig. 3, z-1 = 
backward time-shift operator, i.e. x (k-1) = z-1x (k)): 
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and 
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In (9), the PID controller discrete transfer 

function standard form, i.e. 
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is used together with a serially connected digital 
filter: 
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filter used to compensate unwanted interference of 
the expression     1
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From (9) can be obtained the control 
(command) action 
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Inserting here the polynomials of Q (z-1) and 

P(z-1), the controller output using difference 
equations is 
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From the standard block diagram shown in Fig. 3, the 
closed loop transfer function is 
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To fix the desired pole assignment for above 

closed loop transfer function is necessary to choose 
the characteristic polynomial as 
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for the denominator of  (13), i. e. for 
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In other words, to achieve the specs is 

necessary to select the correct parameters for 
controller polynomials (11), which are the solutions 
of polynomial (15). 
  We know from [6], that the most frequently 
used method of pole assignment to obtain a required 
control response of a closed loop, is done by 
selecting natural frequency 

n
! and damping factor 

!  in the characteristic equation for a second order 
plant, as the polynomial  D(s) = 

02
22
=++

nn
ss !"! .  

 For the polynomial form of D (z-1) have been 
chosen 
 
                     D (z-1) =1+d1z-1+d2z-2 (16)                           

For a sampling period Ts, the coefficients of 
(16) are, in this case: 
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Equating (16) in the right side of (15), the four 

unknown controller parameters can be obtained [9], 
as functions of the controlled system parameters and 
of the number of poles and their desired position in 
the z complex plane. 
 

3. THE SECOND STRUCTURE OF THE 
CONTROL LOOP WITH A STC PID 

CONTROLLER 
 
Comparing the first standard loop with the 

second closed-loop block diagram from Fig. 4 
designed in [3] and [4], the polynomial P (z-1) has the 
same form as polynomial P (z-1) of the PID controller 
denominator discrete transfer function, i.e. 
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In Fig. 3, the controller transfer function is 
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and the discrete transfer function of the process is 
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where b0 ! 0 and d > 0 is the number of the time 
delay steps. In the controller equation from the 
second closed loop structure in Fig. 4, i.e. in 
 

)(

1
)]()(')([)(

1

1

!

!!=
zP

zYzQzEzU "  (20) 

 
the polynomial P (z-1) has the same form as above 
polynomial (18) for the first controller (Fig. 3). The 
polynomial Q (z-1) from (18), is different here and 
has the form (21) 
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Using P (z-1) from (17) and Q’ (z-1) from (21) in 
(20), can be obtained controller output as: 
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 The closed loop transfer function from Fig. 4 is 
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where the characteristic polynomial equation (i.e. the 
denominator) is: 
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= + +  (24)             

 
If the controlled process discrete transfer 

function has the same polynomials A (z-1) and    B (z-

1) as in (19), using (24) can be found the four 
unknown controller parameters q0’, q2’, β and γ (q1’= 
0 in the polynomial Q’ (z-1)). 

As above in Fig. 3, in Fig. 4 was used the same 
pole assignment method, by choosing the 
characteristic polynomial of the form (14) in the 
polynomial (24), to assign the desired pole placement 
for the closed loop transfer function  (13). 

 
4. THE EFFECTS OF THE DIFFERENT 

DISCRETE STC-PID PARAMETERS 
 
In order to observe the effects of the different 

discrete STC-PID parameters obtained with the two 
different control loop block diagram, were 
considered three kind controlled process (c.p.) with 
the following transfer functions: 
i)  A stable c.p.:  H1(s) = 1/ [(3s+1) (s+1)]; 
ii)  A nonminimum phase c.p., H2: 
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H2 (s) = (-s + 1)/ [(4s+1) (s+1)]; 

iii)  An unstable c.p., H3(s) = (s + 1)/ [(s+1) (4s-1)]; 

With Ts =1, the discretized transfer functions are:  
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Using a damping factor ζ=1 (unperiodic critic), 
sampling-time Ts=1s and different values for natural 
frequency (to observe the recommended values from 
[1], i.e. 0.45 0.9

n s
T!" "  were obtained different 

STC-PID parameters and the particular recurrent 
equations (12), and (22) respectively, for each case.  

The results obtained for dynamic behaviors of 
the three processes (systems) are shown below. For 
each STC-PID controller designed and  used in the 
standard control loop Fig. 3 with the three above 
processes, were simulated and shown: step response 
for H1(s), and Simulink results (y, w and u variables 
of the H1(z) model), in Fig. 5, 6, 7); the same 
simulations for the H2(s) and H2(z) models in Fig. 8, 
9, 10); finally, for the H3(s) and H3(z) models, in Fig. 
11, 12 and 13, respectively. 

The results obtained with the second closed 
loop block diagram for the same three models in the 
same fashion, are shown in the Fig. 14, 15, 16 (H1(s), 
H1(z)), the Fig. 17, 18, 19 (H2(s), H2(z)), and the Fig. 
20, 21, 22 (H3(s), H3(z)), respectively. 
 
Results: the first control loop structure (Fig. 5-13, 
without Fig. 12, i.e. the y, w variables of H3 (z)):  
   

 
 

Fig. 5: Step response, H1(s) 
 
 
 

 
 

 
 

Fig. 6: The variables y, w, H1 (z)    
 
 
                           

 
                     
Fig. 7:  The command u, H1 (z) 
 
 
 

 
 
Fig. 8:  Step response, H2 (s) 
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Fig. 9: The variables y, w, H2 (z) 
 

 
 
Fig.10: The command u, H2 (z) 
 

 
 
Fig. 11:  Step response, H3(s), the unstable system 

 
 

Fig. 13:  The command u, H3 (z), the unstable system 
 
Simulations obtained with the second loop 
structure (Fig. 14-22, without Fig. 21, i.e. the y, w 
variables of H3 (z)): 
 

 
 
Fig. 14: *Step response, H1(s) 
 

 
 

Fig.15:*The variables y, w, H1 (z) 
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Fig.16: *The command u, H1 (z) 
 

 
 
Fig. 17: *Step response, H2(s) 
 

 
 
Fig. 18:*The variables y, w, H2 (z) 

 
      
Fig. 19:*The command u, H2 (z) 
 

 
 
Fig. 20:*Step response, H3(s), the unstable system 
 

 
 
Fig. 22:*The command u, H3 (z), the unstable system 
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5. CONCLUSIONS 
 

From the above design and simulation results, 
the following conclusions can be drawn: 
1. The quality of control with digital STC-PID is 
affected by some parameters as e.g. sampling period, 
continuous-time PID parameters, control law 
algorithm, actuator saturation, initial parameter 
estimation, recursive least squares (RLS) method 
used to on-line identification, the type of closed-loop 
control block diagram (1DOF or 2DOF). 
2. The two closed-loop control block diagram and the 
simulations for any of the three processes used in the 
paper (Hi(s), I= 1, 2, 3), have, each, a different 
controller equation, i.e. (12) or (22), with different 
controller parameters. 
3. For design parameters of STC-PID was used pole 
placement method via characteristic polynomial (16), 
i.e. D (z-1) =1+d1z-1+d2z-2, real roots, to obtain a 
similar dynamic behavior to that of second-order 
continuous-time systems with a characteristic 
polynomial D(s) = s2 + 2ξωns + ωn

2 (where the 
dominant poles are given by desired damping factor ξ 
and the natural frequency ωn of the closed loop). In 
all designs the damping factor was ξ =1 but different 
ωn, being respected the inequality 0.45 0.9

n s
T!" "  

from the reference [1]. 
4. The responses were compared to see the 
conventional specs: percent overshoot (POS); rise-
time (tr); settling-time (ts) and steady-state error (εss). 
5. As a final conclusion resulted from all responses, 
the second closed-loop block-diagram (2DOF) when 
is used with STC-PID, give better results as in the 
first case, standard case (1DOF). 
 

 
REFERENCES 

 
[1] Astrom, K.J., and B.Wittenmark, (1995), 

“Adaptive Control”, Addison - Wesley Publ. 
Co., Inc. pp 376-388. 

[2] Bobal, V. (1995), “Self-Tuning Ziegler-Nichols 
PID Controller”, Int.  J. of Adaptive Control 
and Signal Processing, vol.9, pp 213-226. 

[3] Bobal, V., P. Dostal, J. Machacek, and M. 
Viteckova, (2000), “Self-Tuning PID 
Controllers Based on Dynamics Inversion 
Method” in “Proc. of the IFAC Workshop in 
Digital Control: Past, Present and Future of PID 
Control”, Terrassa, Spain, April 5-7, pp 167-
172. 

[4] Bobal, V. J. Böhm, J. Fessl, and J.Machack, 
(2005), “Digital Self-Tuning Controllers ‘, 
Springer-Verlag, Ltd. 

[5] Bobal, V., Chalupa, P., (2003), “Self-Tuning 
Controllers Simulink 
Library”,www.utb.cz/stctool/  

[6] Franklin, G.F., J.D. Powel, and M. Workman 
(1998), “Digital Control of Dynamic Systems”, 
Addison Wesley Longman, Inc, Menlo Park, 
CA, pp 66-70. 

[7] Levine, W.S. (Ed), (1996), “The Control 
Handbook”, (section X, Adaptive Control), 
CRC Press, Boca Raton, Florida, USA 

[8] Ljung, L., and T.Söderstorm, (1983), “Theory 
and Practice of Recursive Identification”, MIT 
Press, Cambridge, Massachusetts 

[9] Ljung, L. (1987), “System Identification. Theory 
for the Users”, Prentice-Hall, London, UK 

[10] Perdikaris, G.A. (1991) “Computer Controlled 
Systems. Theory and Applications”, Kluwer 
Academic Publishers.  

[11] Quevedo, J., and Escobet, T. (Eds), (2000), 
“Proc. of the IFAC Workshop on Digital 
Control: Past, Present and Future of PID 
Control”, Terrassa, Spain, April 5-7. 

[12] Ortega, R., and R.Kelly, (1984), “PID Self-
Tuners: Some Theoretical and Practical 
Aspects”, IEEE Trans. Ind. Electonics, vol.31, 
pp 332-338. 

[13] Radke, F. and R. Isermann, (1987), “A 
Parameter Adaptive PID Controller with Step-
wise Parameter Optimization”, Automatica, 
vol. 23, pp 449-457. 

[14] Söderstrom, T., and P. Stoica, (1989), “System 
Identification”, Prentice-Hall, Englewood 
Cliffs, NJ, USA. 

 


	Lucrare-2-2-Dugan-p10-18
	Lucrare-2-2-Dugan-p10-18.2

