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Abstract: In this paper a classical feedback controller has been designed to furnish 

fast acting characteristics in the face of parametric perturbation using two 

parameters, Generalized Time Constant and Characteristic Ratios. The design is 

extended to develop a controller for the pitch control of a BRAVO fighter aircraft. 

This design allows reduction of overshoot, control of speed of the response and 

robust stability with parametric perturbation. 
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1. INTRODUCTION 

Good transient behavior (Daekwan, et al., 2003; Ali and 

Burghart, 1991) of a dynamic system in time domain 

results early settling time and low overshoot. Slow 

transient response in many cases adversely affects the 

dynamics of the fast acting system such as aircraft pitch 

control system of an aircraft. If the pitch angle of an 

aircraft does not settle to its reference value early, it will 

affect the longitudinal motion of the aircraft making it 

difficult for the pilot to maneuver. The fast acting robust 

controller (Deodher, et al., 1992) tremendously 

improves the dynamics of the aircraft. The robust 

stability is tested here using Kharitonov’s Stability 

Criteria (Kharitonov, 1979;.Minnichelli.et al., 1989).  

The idea is based on the relationship between  

characteristic polynomial coefficients and time domain 

response which was initially presented by  Naslin 

(Naslin, 1965; Naslin 1969)
 
in mid 1960.He observed 

empirically that the step response of all poles of 

various systems remain unchanged provided the 

coefficient of characteristic polynomial satisfy certain 

relation. In 1978 Lipatov and Sokolov (Lipatov and 

Sokolov, 1979) gave several set of sufficient set of 

conditions for stability and instability in terms of 

coefficients of characteristic polynomials. 

Coincidentally the coefficient relationship used by 

Naslin to study the transient response happens to be 

identical with that derived by Lipatov and Sokolov. 

Thus characteristic ratios of a system are an important 

parameter for stability and transient response control. 

Manabe (Manabe, 1998)
 
investigated good transient 

response of the system with help of characteristic 

ratios. He also focused on the generic behavior of the 

plant in the context of Coefficient Diagram Method 

(CDM)
 
(Manabe, 2002; Ocal and Soylemez, 2005) 

designing controller for many industrial applications. 
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In the same manner Characteristic Ratio Assignment 

(CRA) (Kim, et al.,2003) method is developed to 

directly address the transient control problem such as 

overshoot and settling time. 

2. CHARACTERISTIC RATIOS 

The characteristic polynomials have important properties 

related to the step response of Linear Time Invariant 

(LTI) systems. 

Let   p(s) be a polynomial with positive real coefficients 

as follows 
1 1

1 1 0(1)  ( ) . . .n n
n np s a s a s a s a
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−= + + + +  

The characteristic ratios
 
as obtained by Naslin (Naslin, 

1965a, 1969b)
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3. GENERALIZED TIME CONSTANT 

The time constant of a first order system determines the 

speed of the response. The time constant is unknown 

when multiple time constants are present in a system. 

Due to the unknown relation between multiple time 

constants and time response it is difficult to achieve 

desired time response when a higher order transfer 

function (TF) is involved. So the concept of generalized 

time constant τ (Kim and Keel, 2002)
 
is introduced 

which precisely relates to the speed of the response.  

1

0
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a
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Let us consider two polynomials p1(s) and p2(s) to 

construct two all pole TFs G1(s) and G2(s) shown  

below. 
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Theorem 1 

Let yi(t) be the zero state response of  Gi(s),  i=1,2 to 

an arbitrary input. Then 1
1 2

2

( ) ( ) ,  0y t y t t
τ

τ
= ∀ ≥ . 

If and only if both p1(s) and p2(s) have the same 

characteristic ratios: 
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The theorem states that the speed of response of a 

linear all pole system can be controlled while 

maintaining the exact shape of the response by 

adjusting the value ofτ and keeping its characteristic 

ratios same. The following example illustrates the 

theorem. 

 

Example 1 

Let 0 0
6 5 2

6 5 2 1 0

( )
( ) ...

i
i

a a
G S

p s a s a s a s a s a
= =

+ + + +
be an 

arbitrary 6th order  TF for  i =1,2,3.. ..with  
6 5 4 3 2

1( ) 1.25 12.2 31.2 75.23 50 12.50 5p s s s s s s s= + + + + + +    

The generalized time constant 

1
1

0

1 2 .5
2 .5

2 .5

a

a
τ = = =  

The characteristic ratios, obtained using equation 2 are 

1 2 3 4 5[ , , , , ] [0.625,  2.658,3.627,1.060,  3.816]α α α α α =  

Let p2(s), p3(s) are two polynomials whose 

characteristic ratios are same as p1(s) but with 

different time constants
1τ  and 2τ . They are 

constructed using equation 5 and 6 with  
2 =2  τ  and 

3 1.5τ = as follows. 

6 5 4 3 2
2( ) 0.3277 3.998 + 12.78 + 38.52 32 10  5p s s s s s s s= + + + +  

6 5 4 3 2
3( ) 0.05832 0.9487 4.044 + 16.25 18 7.5  5p s s s s s s s= + + + + +  

The step response of G1(s),G2(s) and G3(s) are plotted 

in fig.1 below. It is observed that the smaller   

generalized time constant results slower response 

without altering the shape of it. 
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Fig.1. The Step Responses with different Time 

Constants 
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4. CHANGING THE SPEED OF THE RESPONSE 

(GENERALIZED TIME CONSTANT METHOD) 

For a given all pole system with a given generalized 

time constant Theorem 1 can be extended to determine a 

new generalized time constant which will provide the 

desired speed of the response while maintaining the 

exact shape of the response. 

Corollary 1 

Suppose that G1(s) and G2(s) are all pole systems with 

same characteristic ratios .Let 1  τ and 2τ  be their 

respective generalized time constants. Then for an 

arbitrary 1t and 2t 1 1 2 2( ) ( )y t y t=  if and only if  

2
2 1

1

t

t
τ τ=   

Example 2 

Let G1(s) be an arbitrary all pole TF  

1 5 4 3 2

15
( )

s  + 4 s  + 12.1 s  + 24.14 s  + 16 s + 15

 

G s =  

The generalized time constant 

1
1 

0

=1.0667
a

a
τ =   

The characteristic polynomials calculated from equation 

2 are  as follows 

1 2 3 4[ , , , ] [0.707, 3.008, 1.5166, 1.322]α α α α = The 

step response y1(t) of G1(s)  plotted in fig. 2 is shown 

below. The rise time (where the step response value is 

0.9) of y1 (t) is found out to be 2.37 seconds(t1). Let us 

find out a TF  

0
2

2

( )
( )

a
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=

for a faster response having  rise time 1 

second (t2) .Then the generalized time constant 2τ  is 

determined from Corollary-1 as follows, 

2
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1

1
 (1 .0 66 7 )=  0 .45 0 1

2 .37

t

t
τ τ= =  

p2(s) is  found out using equation .5and 6 as given below 
5 4 3 2

2( ) 0.01337   0.1268  0.909   4.297   6.751   15p s s s s s s= + + + + +  

0
2 5 4 3 2

2

15
( )

( ) 0.01337 s  + 0.1268 s + 0.909 s  + 4.297 s  + 6.751 s + 15

a
G s

p s
= =  

The TF G2(s)   obtained above produces a faster 

response. Similarly it is also possible to obtain a TF G 3 

(s) from Corollary-1 which will provide the slower 

response with rise time 4.74 seconds (t3). 

0 3
3 3 1

3 1

( ) ,  2.133
( )

a t
G s

p s t
τ τ= = =    

3 ( )p s  is found out using equation 5 and 6, 

5 4 3 2 

3
( ) 32   64   96.8   96.54  32   15p s s s s s s= + + + + +   

0
3 5 4 3 2 

3

15
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( ) 32 s  + 64 s  + 96.8 s  + 96.54 s + 32 s + 15

a
G s

p s
= = Th

e step responses y1(t),y2(t) and y3(t) of  G1(s),G2(s) and 

G3(s) respectively are plotted in the fig. 2 below. 
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Fig.2. The Unit Step Responses of   y1(t), y2(t) and y3(t) 

 

As τ  varies the poles of system with same 

characteristic ratios moves along a straight line drawn 

from the origin shown in the fig.3 below. 
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Fig.3. Poles and Zeros of G1(s),G2(s),G3(s) 

5. CHANGING THE SPEED OF THE RESPONSE 

(TIME SCALING METHOD) 

Let G(s) be the close loop TF which represents the 

ratio of the out put Y(s) and a step input R(s). If y(t) is 

the response due to the input r(t),then the response can 

be speeded up by making y(t) as y(βt) where β >1. 

With  similar argument the same response can be 

slowed down if  0<β<1.It is desired to determine a 

modified system with TF H(s) so that its forced 

response due to r(t) is y(βt) for a given value of β. If 

Laplace transformation of a time domain function x(t) 

be X(s) : ( ) ( )x t X s→ , then, ( ) (1 ) ( )x t X sβ β β→ , where 

‘ β ’ is a constant. If overshoot remains same only 

acceleration in time domain is considered then, 

( ) ( / )x t X sβ β→ .So H(s) is the modified TF 

which produces the speeded or slowed response and is  

obtained by replacing s by s β  in G(s). 

Example 3  

This example illustrates how the time response can be 

speeded up or slowed down without changing the 
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overshoot of an arbitrary 5
th

 order plant 

Let
5 4 3 2

15.645
( )

 4  12.1  24.135  21.6  15.645
G s

s s s s s
=

+ + + + +

 

  1

0

1 .38
a

a
τ = =                                                                                                                                                                                             

The characteristic ratios calculated using equation 2 are 

as follows. 

1 2 3 4[ , , , ] [1.2356, 2.2287,1.5166,1.3223]α α α α =  

The step response of the TF   G(s) is plotted in fig. 4 

shown below. The rise time ( 1t ) of response y1(t) is 

found to be 2.40 seconds. This rise time can be 

decreased by choosing the suitable value of β  to fasten 

the response y1(t) . The response is now   decided to be 

speeded up with rise time (t2) equals to 1.0 second. So 

the speed up a factor β (β = t1/t2) reduces to 2.4 seconds. 

The modified TF H1(s) is obtained by replacing  s by 

s β  in G(s)  

1 5 4 3 2

15.645
 ( )      

 0.012 0.120  0.875  4.190  9.0  15.645
H s

s s s s s
=

+ + + + +
 

The step response y2 (t) of TF H1(s) is plotted in Fig. 4 

below shows that the rise time is precisely 1.0 second. 

The rise time ( 1t ) of   the response y1(t) can be increased 

to make the system slower if the value of β  is less than 

1.The response is now   slowed down with rise time (t3) 

equals to 4.8 seconds resulting the speed up a factor β (β 

= t1/ t3) equals to 0.5. The TF H2(s) given below is 

obtained by modifying G(s) as before to produces the 

slowed response.  

2 5 4 3 2

15.645
 ( )

 32.0 64.0  96.8  96.54 43.2  15.645
H s

s s s s s
=

+ + + + +

 

The step response y3 (t) of TF H2(s)   is plotted in   fig. 4 

below shows that the rise time is precisely 4.82 seconds. 
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Fig.4. The Unit Step Responses of   y1(t), y2(t) and y3(t) 

6. THE CHARACTERISTIC RATIOS WITH 

ADJUSTABLE DAMPING 

In this section the overshoot of the step response is 

controlled by relating the multiple characteristic ratios of 

the system with Butterworth polynomial whose 

frequency response is monotonically decreasing. 

Naslin (Kim and Keel, 2002) studied the families of 

polynomials of varying degree with same first 

characteristic pulstances  0β  and the same damping 

factor α defined by equal characteristic ratios as  

1 2 3 1(8) nα α α α α −= = = =  

With  0β  known the remaining pulsatances can be 

obtained from equation 4 
2 1

0 1 0 2 0 1 0(9 )  , , , n
nβ β α β β α β β α β−

−= = =                

With an=1 ,the n
th 

 order polynomial can be 

determined using equation 3 as follows 
1 1 2 3 2 2

0 0(10) ( ) .....n n n n n
np s s s sα β α β− − − −= + + +     

For n=3,4,5,6 and 7  a family of polynomials  pn(s) are  

obtained  from equation (10) 
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( )p s s s s sα β α β α β α β= + + + +                                                                                   

 

 

 

 
6 5 5 9 2 4 12 3 3 14 4 2

0 0 0 06

15 5 15 6
0 0

( )

            

p s s s s s s

s

α β α β α β α β

α β α β

= + + + +

+ +

          

7 6 6 11 2 5 15 3 4 18 4 3
0 0 0 07

20 5 2 21 6 21 7
0 0 0

( )

           

p s s s s s s
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With the polynomials shown above for different 

values of n=2,4,5,7  the TFs are constructed as 

0( )
( )

a
G si

p si
=    where a0  is the constant in pi(s) 

and i=2,4,5,7 .The unit  step responses of all Gi(s)   are 

plotted for different values of  α  (keeping 

β constant) to study the effect of damping on 

responses.  

 

Example 4 

For α =1.5 and β =1 the step responses are plotted 

below in Fig. 5 shows that for n=2 the step response is 

clearly different than the responses obtained from 

higher order of the polynomials (n=4,5,7) . 

 For α =2.5 and β =1 the step responses plotted 

below in Fig. 6 shows that responses obtained from all  

the polynomials (n=2,4,5,7)  are almost same and 

difficult to distinguish. With increasing value of α  

the responses are almost similar and independent of 

order of the polynomials. 

It is noted in this section when  α  is more than 2 the 

responses do not dependent on the order of the 

5 4 4 7 2 2 9 3 2
0 0 05

10 4 10 5
0 0

( )

             

p s s s s s

s

α β α β α β

α β α β

= + + + +

+
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polynomials. At α =2.5 the responses are free of 

overshoot which was confirmed from the result of   

Manabe. A systematic and analytical method is 

developed in the next section to obtain all pole system 

with no overshoot. 
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Fig.5. Step Response for 1.5, 1α β= =  
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Fig.6. Step Response for 2.5, 1α β= =  

7. STRATEGY FOR NO OVERSHOOT 

Chestnut (Kim and Keel, 2002) provided a set of 

empirical results through a performance chart relating 

frequency response of the linear system with it’s 

transient behavior. A function whose frequency 

magnitude is flat and can control the overshoot with 

steepness of attenuation slope in high frequency region.   

In filter design the magnitude squared response of an 

analog low pass Butterworth filter ( )aH s of order N is 

given by (Mitra, 2005) 

 2

2

1
(1 2 )  ( )

1 ( ) N
c

H a jΩ =
+ Ω Ω

 

where  cΩ  is 3db cutoff frequency. 

The maximally flat characteristics are obtained by 

setting the first 2N-1 derivatives of 2

0
( )H a j

Ω =
Ω  to 

zero. So the Butterworth filter is said to have maximally 

flat magnitude at Ω =0 .This maximally flat 

characteristic is exploited later in this section to 

construct a Butterworth polynomial to obtain   no 

overshoot. 

A Butterworth polynomial is expressed as 
1 2 1

1 2 1 0(13) ( ) ...
n n

n np s a s a s a s a s a
−

−= + + + + +   

                                                                       

The fig. 7 depicts the characteristic of  4
th

 ,6
th
 and 8

th
  

order Butterworth filters with 3 dB cutoff frequency at 

Ω =1 . 
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Fig.7. Frequency Magnitude of Butterworth Filters 

 

Next the conditions for obtaining a Butterworth 

polynomial with help of characteristic ratios ( iα ) are 

discussed with help of the following theorem (Kim, et 

al., 2003). 

 

Theorem 3  
 Let G(s) be all pole TF:  

0 0
1

1 1 0

( ) , 0
( ) ...

in n
n n

a a
G s a

p s a s a s a s a
−

−

= = >
+ + + +

and iα , be the characteristic ratios of p(s) . 

A) Then the frequency magnitude function ( )G jω  

monotonically decreasing if the following two 

conditions are held 

B) p(s) is Hurwitz if the following two conditions are 

met  

Conditions: 

(1) 1α >2 

(2)
1

sin sin

.

2 sin
k

k

n n

k

n

π π

α α
π

   
+   

   =
 
 
 

 for k=2,3,n-1 

The above theorem shows with iα >2   a all pole TF can 

be constructed whose magnitude is monotonically 

decreasing. By adjusting the parameter iα  the desired 

damping can be achieved. 

The generalized time constant τ  can be chosen 

independently of iα . The coefficients of Butterworth 

polynomial for an arbitrary  τ  and 0a  are given below 

as  

1 0(14)  a aτ=  
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0

2 3 1
1 2 3 1

 (15) 
...

i

i i
i i i

a
a

τ

α α α α −
− − −

=   where  i = 2, 3,..n 

Thus it can be concluded that the coefficients of 

Butterworth polynomials are dependant on two 

parameters i.e. characteristic coefficients ( )iα  and 

generalized time constant (τ ).  

8. DESIGN OF CONTROLLER FOR AN 

ARBITRARY PLANT 

In the feed back configuration the controller can be 

implemented for an arbitrary plant by using feed back 

along with a feed forward controller outside the 

feedback loop. The controller set up is shown in fig. 8 

below.  

In the block diagram shown below G(s) is the plant TF 

expressed as below. 

 
Fig. 8. Block Diagram of Two Parameter Controller 

( )
( )

( )

n s
G s

d s
=  

The close loop transfer function 
( ) ( ) ( )

( )
( ) ( )

Y s f s n s
T s

R s p s
= =  

where  ( ) ( ) ( ) ( ) ( )p s m s d s l s n s= +   

 

Example-2.5 

G(s) is taken here as an arbitrary higher order plant to 

illustrate the designing of the above controller. 

(16)  G(s) =   
2

6 5 4 3 2

600( 2.5)

s  +4.8s  +12.84s + 11.232 s +65.02s  +213.27 s+1189.3

s s+ +                                                                    

( )p s , m(s) and n(s) are expressed as a factor of 

numerator of G(s)  are given below  as 

 

2 ( ) ( )( 2.5) p s p s s s= + +  

(17)                           
2 ( ) ( )( 2.5)m s m s s s= + +            

                                   
2( ) ( )( 2.5)n s n s s s= + +  

 

2

2 2

 (18)  ( ) ( )( 2.5)

      ( )( 2.5) ( ) ( ) (s)( 2.5)

p s p s s s

m s s s d s l s n s s

= + +

= + + + + +
 

 

              The above equation is known as Diophantine equation   

(Franklin, et al., 2002)   .With a given polynomial p(s) 

the values of the coefficients of numerator and 

denominator of controller is found out. If the order of 

d(s) is p(given) and order of m(s) is q(to be calculated) 

then the direct count yields 2q+1 unknowns in m(s), 

l(s) and (p+q) equations for the coefficient of power s. 

Then the requirement arises 

 

    (19) 2 1q p q+ ≥ +  or  1q p≥ −   

 

From the equation (19)  the order of the controller is 

found out to be 5q =   .So the 5
th

 order controller 

polynomials  can be expressed as  

 

(20) 

5 4 3 2
5 4 3 2 1 0

5 4 3 2
5 4 3 2 1 0

( )

( )

m s m s m s m s m s m s m

l s l s l s l s l s l s l

= + + + + +

= + + + + +  
First   the values of iα are calculated with 1α =2 for 

i=2.3…9 using Theorem-2.The coefficients of ( )p s  is 

calculated with  0 1a =  and 1τ =  using equation 14 

and 15. From equation 17, p(s) is calculated. The step 

response y(t) with initial value of α = 2  is plotted in 

the fig. 9 below with overshoot 17.12% .The over 

shoot is again reduced to 2.3% with increasing value 

of 2.1α = .Finally it is observed that with further  

increase the value of  2.25α =  offers no overshoot 

with settling time (where output is  0.99) 1.92 seconds 

(t1). If the desired settling time be 1 second(t2) 

resultsτ = 2 1t t = 1/1.912 = 0.5208.The results are 

plotted in fig. 10 for different values of α  for a 

comparative analysis and their behavior in time 

domain .Then the controller polynomials l(s) and m(s) 

as shown in equation  20 are  obtained  with  final 

value of 2.25α = . 

From Theorem 2 with 1 2.25α =  p(s )is found as 

11 10 9 8

7 6 5 4

3 2 1

(21)  ( ) 0.00008 0.00294 0.05043 0.5671

         4.6085 28. 130.754 455.1694 

          1144.7638 1950.00 2100. 1500.00

p s s s s s

s s s s

s s s

= + + +

+ + + + +

+ + +

 

  Let us express p(s) as follows 

(22) 11 10 1 0
11 10 1( ) ...p s p s p s p s p= + + +  

 Equation 22 can be written as  

11 10 1 0
11 10 1(23)  ... ( ) ( ) ( ) ( )   p s p s p s p m s d s l s n s+ + + = +  

The coefficients of the polynomials m(s) and l(s) are 

found out from equation 23 with  2.25α =  are given 

below  
5 4 3 2

5 4 3

(24)      ( ) 0.0000052 0.00083 0.0590 2.3932

                                                            2.4784 5.8324                  

             ( ) 0.0974 2.0274 24.237 180.569

m s s s s s

s

l s s s s s

= + + +

+ +

= + + + 2

                                                            780.305 1495.375

            ( ) 1500

s

f s

+ +

=
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Fig.9.  Step Response for different values of α  

9. DESIGN OF CONTROLLER FOR PITCH 

CONTROL SYSTEM OF AN AIRCRAFT 

The controller discussed above is redesigned for pitch 

control system of a BRAVO fighter aircraft (McLean, 

1990). As shown in fig. 10 refθ  is the reference pitch 

angle command as desired by the pilot, Eδ  is the 

elevator deflection angle and θ is the actual output pitch 

angle.  

2

( ) 20.67( 0.621)
(25) ( )

( ) (s  + 1.822 s+28.54)E

s s
G s

s s

θ

δ

− +
= =  

 
Fig.10. The Pitch Control System of an Aircraft 

 

As per the convention of NASA (Olivera, 2008). the 

down ward motion of the elevator is known as  positive 

elevator deflection so that positive elevator deflection 

results positive pitch angle .For our simulation purpose 

here the negative sign is not considered because we have 

considered the pitch angle obtained by the negative 

deflection of the elevator. The order of the plant  G(s), 

i.e. p=3 .From equation 19  the order of the controller is 

found out to be, q= 2 .So the 2
nd

 order controller 

polynomials  can be expressed as  

2
2 1 0

2
2 1 0

(26)   ( )                          

         ( )

m s m s m s m

l s l s l s l

= + +

= + +  
So the order of the polynomial p(s ) is , p+q= 5.As p(s) 

is of order 5, the order of ( )p s  will be of  4 from 

equation 19.The values of iα s are calculated with 

1α =2 for i=2.3,4 using Theorem 2.Then the 

coefficients of ( )p s  is calculated as before with  

0 1a =  and 1τ = . Two   different values of the α   

taken here for simulation are 2.1, and 2.25.  The first 

value of α =2.1 produces overshoot of 10.8 %.The 

overshoot is undesirable for the aircraft which may 

cause problem for the pilot to maneuver and control it. 

So the second value of  α =2.5 is taken to reduce the 

overshoot. Now it is observed at α =2.5 overshoot is 

found to be zero with settling time 2.25 seconds (t1). 

As the aircraft possesses faster dynamics the lesser 

settling time is always preferred. The settling time 

desired here is 1.25 second (t2) which results τ = 

2 1t t = 1.25/2.25= 0.5. The step response for the two 

different values of  α , are plotted along with the 

fastened response in fig. 11 shown below.  
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Fig.11. Step Response of the Pitch Control System 

 

The Butterworth polynomial ( )p s  is calculated with 

2.5α =  as done in previous section given below. 

4 3 2
( ) 0.0002 0.0067 0.0797 0.4464  1.0p s s s s s= + + + +  

( )p s is calculated multiplying (20.67 12.84)s +  with 

( )p s  given below 

5 4 3 2    0.004 0.1407 1.7334 1.0251 26.402 12.840(27) ( ) s s s s sp s = + + + + +

The controller polynomials obtained using equation 23 

are given as 
 

2

2

( ) 0.005 s +1.6933 s+1.0322

( ) 0.795 s +3.436 s+12.84

m s

l s

=

=
                                                               

f(s )=12.84                                                                              

10. KHARITONOV’S STABILITY CRITERIA 

In practice the parameters of the aircraft are subjected 

to certain changes in their original value due to wind 

speed and change in the aircraft speed . The 

Kharitonov stability test is carried out here to establish 

that the system with designed controller is stable and 

robust to with stand the parametric changes.  
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Let the characteristic equation p(s) which is a monic 

polynomial (the highest coefficient of s =1) is defined as 

below 

(28) 1
0 1 2 1( ) ... n n

n nf s a a a a s a s−
−= + + + + +  

ka and ka  are the smallest and largest value of 

coefficient of k
s  respectively with perturbation ( )xµ  in 

the characteristic equation defined as below 

( )k ka a xµ= −  

( )    0,1, 2,3,.. 1k ka a x for k nµ= + = −  

The four monic polynomials obtained as follows:  

(29) 

1n na a= =  

2 4
1 0 2 4

0,

( ) ... ( min( , )
n

k k k k
k k

k even

g s a a s a s j j a j a s
=

= + + + = ×∑  

2 4
2 0 2 4

0,

( ) ... ( min( , )
n

k k k k
k k

k even

g s a a s a s j j a j a s+
=

= + + = ×∑                           

3 5 1 1 1
1 1 3 5

1,

( ) ... ( min( , )
n

k k k k
k k

k odd

h s a a s a s j j a j a s− − −

=

= + + + = ×∑                            

2 5
2 1 3 5

1,

( ) ... ( min( , )
n

k k k k
k k

k odd

h s a a s a s j j a j a s+
=

= + + = ×∑  

 

The Kharitonov’s polynomials are defined as  

 

(30) ( ) : ( ) ( )kl k lk s g s h s= + , where  k,l=1,2 

If the above four polynomials are Hurwitz then the 

characteristic polynomial is Hurwitz and stable within 

the given perturbation range. It is assumed here the 

nominal value of µ  to be 20 % of the  coefficients of 

the characteristic equation .The four polynomials with 

above value of µ  are found out from equation 29 and 

30 as follows. 

 

(31) 
2 3 4 5( ) 2233.043 4591.652 2674.252 452.217  24.486  11k s s s s s s= + + + + +  

2 3 4 5( ) 2233.043 6887.471 2674.252 301.478  24.486  12k s s s s s s= + + + + +  

2 3 4 5( ) 3349.565 6887.478 1782.834 301.478  36.73022k s s s s s s= + + + + +                  

2 3 4 5( ) 3349.565 4591.652 1782.834 452.217  36.730  21k s s s s s s= + + + + +  

11 12 21( ), ( ), ( )k s k s k s  and 22 ( )k s in equation 31 are 

tested for and found to be Hurwitz using Routh’s array. 

So the controller designed for the pitch control system is 

robust within the perturbation range. 

11. CONCLUSION 

In the last decade many elegant modern control 

techniques such as 2,  H H∞  and µ have been developed 

for designing LTI system. Despite their theoretical 

success these techniques have drawbacks resulting 

higher order fragile robust controller in practice. The 

CRA techniques discussed in this paper establishes a 

relation between generalized time constant and 

characteristic ratios relating to the unit step response 

to select a characteristic polynomial for a desired 

response. The problems of overshoot reduction and 

changing the speed of the response are addressed in 

this paper for arbitrary and real aircraft pitch control 

system. The use of a Butterworth filter for dynamic 

systems in terms of the characteristic ratios guarantees 

stability. Further the problem of parametric 

perturbation is addressed to make the pitch control 

system robust using Kharitonov’s Criteria.  
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