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Abstract: The problem of estimating a signal corrupted by additive noise has been of 

interest to many researchers for practical as well as theoretical reasons. Wavelet based 

methods have become increasingly popular, due to a number of advantages over the 

linear methods. A simulation-based analysis of some thresholding functions in the 

context of denoising application of wavelet transform was investigated. A probability 

based function to compute the threshold parameter is described and implemented in the 

Matlab-Simulink simulation environment, by using an estimation of the probability 

density function of the wavelet coefficients. The obtained results are at the same quality 

level with other procedures currently used in denoising. 
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1. INTRODUCTION 

The main objective of the paper is to present a 

simulation based analysis of the signal denoising 

application of wavelets. Some classical - well-known 

- functions were considered as well as a probability-

based function to estimate the parameters of the 

thresholding algorithms. Firstly, in section 2, we 

make a short review of the wavelets theory in order 

to understand better the background, the state of the 

art and to prepare the field for new denoising 

algorithms. Secondly, in section 3, we make an 

analysis of some well known and intensive used 

thresholding algorithms. Section 4 describes the 

proposed algorithm for the computation of the 

threshold. Section 5 presents and comments the 

obtained results on various input signals by using the 

proposed algorithm and referring to other common 

and intensively used denoising algorithms. 

2.  BACKGROUND 

There are at least two ways to introduce wavelets: 

one is through the continuous wavelet transform 

(CWT) and another one is through multiresolution 

analysis (MRA),  (Jawerth and Sweldens, 1993). The 

MRA could be explained also by starting from 

signals bases, (Phillips, 2004).  Let { }kjkj ,,, ∀ψ  be an 

orthogonal basis. Let 
jW  be the set of all signals, 

)(ts , which can be synthesized from the baby 

wavelets { }kkj ∀,,ψ , so 

(1) ∑
∞

−∞=

⋅=

k

kjkjj tcts )()( ,, ψ  

and 
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(1.a) ∑
∞

−∞=

=

j

j tsts )()(  

Another way to express the above idea is to define 

jV  to be the set of all signals, s(t), which can be 

synthesized from the baby wavelets )(, tkiψ , where 

i<j and ∞<<∞− k : 

(2) ∑ ∑
−

−∞=

∞

−∞=

⋅=

1

,, )()(

j

i k

kiki tcts ψ   

Every signal in 
1+jV  is a sum of a signal in 

jV  and 

jW , which  means that the spaces 
jW  are the 

differences (in the subspace sense) between adjacent 

spaces 
jV  and 

1+jV : 

(3) 
jjj VWV +=+1
 

The useful wavelets, )(tψ , have a scaling function 

)(tφ  which can produce the multiresolution spaces 

jV . Defining “baby scaling functions” 

(4) )2(2)( 2/
, ktt

jj
kj −⋅= φφ  

where ∞<<∞− kj, , just as for the wavelet, the 

scale of )(, tkjφ  is j2/1  and the “position” is j
k 2/ . 

There it is possible to find scaling functions )(tφ  so 

that the signals in the space 
jV  can be synthesized 

from the baby scale functions )(, tkjφ . Thus we can 

decompose a signal from any space by using the sub-

spaces V and W with their bases )(, tkjφ  and )(, tkiψ , 

so we may write: 

(5) 
0 , 0 1,

1 1, 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

J q J k

q k

J k

k

s t cA q t cA k t

cD k t A t D t

φ φ

ψ

−

−

= ⋅ = ⋅

+ ⋅ = +

∑ ∑

∑

 

The signals )(1 tA  and )(1 tD  are called the 

approximation and detail at level 1, and )(1 kcA  and 

)(1 kcD  are the approximation coefficients and the 

details coefficients at level 1. The wavelets and the 

scales at each index level are orthogonal, (Phillips, 

2004). These spaces are orthogonal to each other and 

it is possible to design any signal by writing the 

decomposition process of the signal as (Phillips, 

2004): 

(6) 1 1 2 2 1

3 3 2 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...

s t A t D t A t D t D t

A t D t D t D t

= + = + +

= + + + =
 

where )(tDi
, in 

iW− , is called the detail at level i and 

)(tAi
, in 

iV− , is called the approximation at level i. 

 

The decomposition process can be iterated, with 

successive approximations being decomposed in 

turn, so that one signal is broken down into many 

lower resolution components. This is called the 

wavelet decomposition tree. Other details and 

tutorials are presented in ( Strang and  Nguyen, 1996; 

The Wavelet Digest , 2008). 

3. DENOISING PRINCIPLE 

3.1. The basic model 

The underlying model for the noisy signal is 

basically of the following form:  

(7) )()()( nznfns ⋅+= σ   

where time n is equally spaced. In the simplest 

model, it is supposed that z(n) is a Gaussian white 

noise N(0,1) and the noise level is supposed to be 

equal to 1. The de-noising objective is to suppress the 

noise part of the signal s and to recover f, i.e. to find 

the best estimate f̂  in order to minimize a quality 

criterion based on, e.g., the mean square error. The 

method is efficient for families of functions f that 

have only a few nonzero wavelet coefficients. These 

functions have a sparse wavelet representation. For 

example, a smooth function almost everywhere, with 

only a few abrupt changes, has such a property. 

 

From a statistical viewpoint, the model is a 

regression model over time and the method can be 

viewed as a nonparametric estimation of the function 

f using an orthogonal basis.  

 

The pioneering work is of Donoho, (Donoho, 1995). 

Methods based on multiscale decompositions consist 

of three main steps: First, the raw data are 

decomposed by means of the wavelet transform, then 

the empirical wavelet coefficients are shrunk through 

a thresholding mechanism, and finally, the denoised 

signal is synthesized from the processed wavelet 

coefficients through the inverse wavelet transform. 

The structure is presented in Fig.1, where TH stands 

for thresholding, cA for approximation coefficients 

and cD for detail coefficients. 

 
Fig.1 – The structure of the denoising process 

3.2. The optimum  level of decomposition 

From the previous section, we have known that 

different levels constitute the wavelet transform. The 

maximum level to apply the wavelet transform 

depends on how many data points contain in a data 

set, since there is a down sampling by 2 operations 

from one level to the next one. A factor that affects 

the number of level we can reach to achieve the 

satisfactory noise removal results is the signal-to-

noise ratio (SNR) in the original signal. Generally, 

for high values of the SNR values 4 or 5 for the 

decompositions levels are enough. 
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3.3. Some properties of the coefficients 

Properties of the coefficients are interesting to study 

because such set of properties is the generator for 

thresholding methods and algorithms. 

In general, for a one-dimensional discrete-time 

signal, the high frequencies influence the details of 

the first levels (the small values of j), while the low 

frequencies influence the deepest levels (the large 

values of j) and the associated approximations. Some 

known facts, (Misiti, et al., 2006), are:(1) If a signal 

comprising only white noise is analyzed, the details 

at the various levels decrease in amplitude as the 

level increases. The variance of the details also 

decreases as the level increases. The details and 

approximations are not white noise anymore, as color 

is introduced by the filters; (2) If the analyzed signal 

s is stationary, zero mean, and contains a white noise, 

the coefficients are uncorrelated; (3) If furthermore s 

is Gaussian, the coefficients are independent and 

Gaussian; (4) If s is a colored, stationary, zero mean 

Gaussian sequence, then the coefficients remains 

Gaussian. For each scale level j, the sequence of 

coefficients is a colored stationary sequence. It could 

be interesting to know how to choose the wavelet that 

would de-correlate the coefficients. This problem has 

not yet been resolved. Furthermore, the wavelet (if 

indeed it exists) most probably depends on the color 

of the signal. For the wavelet to be calculated, the 

color must be known. In most instances, this is 

beyond our research; (5) If s is a zero mean ARMA 

model stationary for each scale j, then there is also a 

stationary, zero mean ARMA process whose 

characteristics depend on j. 

4. THRESHOLDING FUNCTIONS 

The parameters of the thresholding functions are 

presented  now but it is important to take into 

account that the denoising has a composed causes 

based on both threshold function and thresholding 

value. Figure 2 presents some thresholding functions. 

 
Fig. 2Thresholding functions; 

1 2
1, 2,th th= =  3.7α =  

Hard thresholding is the simplest method. It can be 

described as the usual process of setting to zero the 

elements whose absolute values are lower than the 

threshold. As it can be seen the hard procedure 

creates discontinuities at thx ±= . It has been shown 

that hard thresholding provides an improved signal to 

noise ratio (Jawerth and Sweldens,1993). 

 

Soft thresholding is an extension of hard 

thresholding. First setting to zero the elements whose 

absolute values are lower than the threshold, and then 

shrinking the nonzero coefficients towards. The soft 

procedure does not create discontinuities. Soft 

thresholding has nice mathematical properties and 

the corresponding theoretical results are available, 

e.g. see (Donoho,1995). 

Simple threshold values with hard thresholding 

results in larger variance in the function estimate, 

while the same threshold values with soft 

thresholding shift the estimated coefficients by an 

amount of threshold, creating unnecessary bias when 

the true coefficients are large. Also, due to its 

discontinuity, hard thresholding can be unstable, that 

is, sensitive to small changes in the data (Antoniadis, 

et al., 2001 

 

Thresholding methods can be grouped into two 

categories: global thresholds and level-dependent 

thresholds. The former means that we choose a single 

value th to be applied globally to all empirical 

wavelet coefficients, while the latter means that a 

possibly different threshold value th is chosen for 

each resolution level (Antoniadis, et al., 2001). 

 

5. THRESHOLD LIMITS 

The detail coefficients at the finest scale are 

essentially noise coefficients with standard deviation 

equal to σ. The median absolute deviation of the 

coefficients is a robust estimate of σ. 

Many methods for setting the threshold have been 

proposed. The most time-consuming way is to set the 

threshold limit on a case-by-case basis. The limit is 

selected such that satisfactory noise removal is 

achieved. Commonly these thresholds need an 

estimate of the noise level, σ . (Donoho, et al., 1994) 

considered estimating σ  in the wavelet domain, 

more exactly based on the coefficients at the finest 

resolution level, because the coefficients at this level 

tend to consist mostly of noise; they proposed a 

robust estimate of the noise level σ  based on median 

absolute deviation. For example, for a Gaussian noise 

; if we apply orthogonal wavelet transform to the 

noise signal, the transformed signal will preserve the 

Gaussian nature of the noise, which the histogram of 

the noise will be a symmetrical bell-shaped curve 

about its mean value. From theory, four times the 

standard deviation would cover 99.99% of the noise. 

Therefore, we could set the threshold be 4.5 times of 

the standard deviation of the wavelet-transformed 

signal to remove the Gaussian noise in the signal. 

How we should do when the noise is not gaussian? 

We will try to answer in the next section by choosing 

a criterion based on estimated probability density 

function. Other commonly used functions to estimate 

the best value of the threshold are described now. 

The universal threshold ensures, (Antoniadis, et al., 

2001), with high probability, that every sample in the 
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wavelet transform in which the underlying function is 

exactly zero will be estimated as zero.  

It uses a fixed threshold chosen to yield minimax 

performance for mean square error against an ideal 

procedure. The minimax principle is used in statistics 

to design estimators. Since the de-noised signal can 

be assimilated to the estimator of the unknown 

regression function, the minimax estimator is the 

option that  realizes the minimum, over a given set of 

functions, of the maximum mean square error, 

(Misiti,et al,2006;(Donoho, et al., 1994; Donoho and 

Johnstone, 1998).  Since the type of oracle (ideal 

observer) used has little impact on the minimax 

thresholds, (Antoniadis, et al., 2001) presents a table 

that can be used as a look-up table in any software. 

 

Wavelet thresholding could suffer from artifacts of 

various kinds. In other words, in the vicinity of 

discontinuities, these wavelet thresholding estimators 

can alternate undershoot and overshoot of a specific 

target level. (Coifman,et al., 1995) proposed the use 

of the translation invariant wavelet thresholding 

scheme that helps to suppress these artifacts. 

 

The idea of wavelet thresholding can be viewed as a 

multiple hypotheses testing. For each wavelet 

coefficient )ˆ,(~ˆ 2σjkjk dNd  a hypothesis is tested. If 

it is rejected the coefficient 
jkd̂  is retained in the 

model; otherwise it is discarded. Details could be 

found in (Abramovich and Benjamini,1995). 

 

Other alternative thresholding methods are: (1) 

methods based on cross-validation by minimising the 

mean integrated squared error (MISE) between a 

wavelet threshold estimator and the true function, 

(Nason, 1994; Donoho, et al., 1995;  Antoniadis, et 

al., 2001; (2) the Sureshrink method, (Donoho, et al., 

1994;Antoniadis, et al., 2001); (3) methods using  

recursive hypothesis testing problem, in the sense 

that rather than seeking to include as many wavelet 

coefficients as possible (subject to constraint) as in 

(Abramovich and Benjamini,1995), the procedure 

includes a wavelet coefficient only when there is 

strong evidence that is needed in the reconstruction, 

(Ogden,et al.,1996). 

For the cases where a nonwhite noise e is more 

evident, thresholds must be rescaled by a level-

dependent estimation of the level noise (Misiti, et al., 

2006), so we have an adaptive thresholding of 

wavelet coefficients.  The idea is to define level-by-

level time-dependent thresholds, and then increase 

the capability of the de-noising strategies to handle 

nonstationary variance noise models.   

 

6. DESCRIPTION OF THE METHOD 

A method for threshold computation is presented 

now, which is based on the probability of occurrence 

of detail coefficients on each level of detail.  

The method is applied to each level of detail. The 

selection criterion is based on the probability of 

details coefficients. Thus, all details coefficients that 

have a probability of appearance greater than an 

imposed value are selected. The method is 

independent of the probability density function of the 

noise. 

 

At each detail level the pdf is estimated and used in 

the computation of the probability limits. 

 

After removing the average we may suppose a 

symmetric pdf. Then, the threshold is increased until 

the probability of (| X(t)|  > th) is less then an 

imposed value , let say Pi. 

(8)
iPthtNP => ))((  

The pdf is estimated by using the histogram. The 

range of data is divided into a number of cells of 

equal size and the number of data points within each 

cell is tabulated. The true but unknown probability 

density function of X is w(x), and there are N 

measurements to be placed in n cells each of width 

W. Even there it is a loss of information, the 

approximation is accepted, (Shanmugan, et al., 

1988).   

The pseudocode of the algorithm is presented now. 

 

THRESOLD_ALGORITHM 

#1: Data Inputs:  

Pi := Probability of loss ( 0.005) 

w := resolution of histogram (the cell’s width) 

#2: Compute histogram 

th := 0; 

#3: LOOP th  

th := th + w; 

UNTIL Eq. (1) is satisfied. 

     #4: Data output: th 

END 

The method is quite close to the problem of 

computation of the threshold by taking into account 

values which are greater than the noise level, σ , 

because the last conditions involves also a probability 

value. The advantages of the method is its generality, 

because does not matter the type of pdf. 

7.  SIMULATION RESULTS 

A. Case study signals 

There are four signals as case studies (1) a signal 

(randn) whose elements are normally distributed with 

mean 0, variance σ
2
=1, and standard deviation σ=1, 

N=2000 sample (2) an ECG recorded signal with N = 

2000 sample and sampling frequency 1000 Hz, 

(Popa, 2006); (3) a Doppler signal with noise, 

(Misiti, et al., 2006), with N=1024 samples;(4) a 

sound signal (mtlb) with noise (noise = 

cos(2*pi*3*Fs/8*(0:length(mtlb)-1)/Fs)'). The 

signals are presented in Fig. 3. For simplicity reasons 

they will be renamed as s1, s2,,s3 and s4, respectively. 
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Fig.3: Test case signals 

 

B. Results 

We used soft thresholding function for all cases. We 

were interested in the evaluation of the probability-

based function in the computation of the threshold. 

Two others thresholds were considered, as provided 

by the Matlab simulation environment, i.e. 

“minimax” and “sqtwolog” (universal) functions. 

 

A function to compute the threshold parameter was 

described and implemented in the Matlab simulation 

environment. Numerical values of the simulations are 

presented in Table 1. For each signal – case of study, 

the thresholds are computed and only three levels of 

decomposition were considered.  

 

Table 1 - Various thresholding values 

minimax universal probability based 

Case 1 – s1 

2.2166 3.7172 0.7861 

2.0345 3.5266 0.7916 

1.8526 3.3255 0.8388 

Case 2 – s2 

2.2166 3.7172 0.0213 

2.0345 3.5266 0.1134 

1.8526 3.3255 0.3671 

Case 3 –s3 

2.0402 3.5328 0.3291 

1.8589 3.3326 0.3366 

1.678 3.1201 0.6483 

Case 4 –s4 

2.3995 3.8992 0.6222 

2.2169 3.7175 0.5366 

2.0345 3.5266 0.6215 

 

The approximation criterion is based on the 

Normalized Mean Squared Error (NMSE). The 

obtained values are presented in Table.2. The 

approximation obtained by using a probability based 

threshold computation is quite close to the results 

obtained by the other two functions. 

Table 2 – The Mean square errors 

Minimax universal probability based 

Case s1 

0.0246 0.0253 0.0206 

Case s2 

0.0024 0.0024 0.0023 

Case s3 

0.0153 0.0153 0.0151 

Case s4 

0.0502 0.052 0.0494 

 

Numerical values for evolution of the mean square 

errors with probability of loss for s1 are presented in 

Fig.4. To minimize this error, we need to have a 

small probability of loss. Losing the detail 

coefficients give a poor estimation of the signal 

without noise (because details coefficients are 

delayed) but a more accurate representation for a 

signal with noise. 

The qualitative results presented in Fig. 5, show quite 

good results of denoising. By the “noise” label the 

original signal is presented. The “de-noised” label 

presents the processed signal. 

 
Fig. 4. MSE – Loss Probability dependency 

 

 

 

 
Fig. 5.Denoising results of  the  s1, s2, s3and s4 signals 
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8. CONCLUSIONS 

In this work we developed and tested a probability 

based function to compute the threshold parameter by 

using the estimated probability density of the wavelet 

coefficients.  

 

The experiments were conducted under simulation 

environment and the results are at least at the same 

quality level with other procedures currently used in 

denoising. In the future we will test our algorithms 

for 2D signals. 
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