

A STUDENT MODEL IN A MULTI-AGENT INTELLIGENT SYSTEM

Cornelia Novac – Ududec, Rodica Birla
cornelia.novac@ugal.ro, arondica@yahoo.com

University “Dunarea de Jos” of Galati, Department of Computer Science,

111 Domneasca Street, Galati, Romania

Abstract: The paper presents an intelligent tutoring system which provides a Student
Model using the “overlay method”. The system’s tasks are distributed among the
intelligent agents (software agents), each having clearly specified individual roles as
following: administrator (Cerberus Agent); interface (InterfaceAgent); tutor
(TutorAgent); student (StudentAgent). Moreover, the system is a “three-tier” architecture
application and was implemented in Java language.

Keywords: multi-agent system, educational system, student model, intelligent system

1. INTRODUCTION

The current thought patterns related to intelligent
tutoring systems refer to creation of distributed
applications, which can be accessed by a great
number of users and do not necessarily require the
physical presence of the tutor.

Moreover, the responsibilities of the tutor (as real,
physically present person) are proposed to be
distributed to the intelligent system’s modules, with a
view to automating the tutoring process
(coe.sdsu.edu/..) The computer network provides the
option of identifying another system or human
partner able to assist the student solve its problem.
This tendency can be found in the collaborative
tutoring system approaches, capable of finding
suitable partners for either assistance or
collaboration, for setting up teams or initiate group
activities (Weiss et al, 1999), (www.aaai.edu/..).

Therefore, it becomes necessary that tutoring systems
(or their modules providing adaptive assistance) were
capable of communicating information about their
users, their available resources and their objectives in
order to be able to identify a suitable partner (Martin
et al., 1999).

We may well imagine software agents attached to
every application or tutoring environment, each
having an explicit representation of the users’
objectives, of their plans and resources. These agents
communicate and negotiate with each other in order
to fulfill their individual or group objectives (Kelly et
al, 2006).

The present paper aims to describe a multi-agent
tutoring system (MTS) designed and implemented
within the Computer Science Department, in which
research focused upon “modeling” the student with a
view to identifying the most suitable methods and
tutoring strategies by taking into account individual
knowledge and abilities.

The “modeling student process” used the overlay
architecture (common for many tutoring systems)
combined with the Bayesian Theory of Probability
(www.cs.umbc.edu/..)

2. THE PROTOTYPE MTS (MULTI-AGENT
TUTORING SYSTEM)

The tutoring system is designed as a distributed
application, providing the option of distance

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Severin Bumbaru
5

mailto:cornelia.novac@ugal.ro
mailto:arondica@yahoo.com
Popa
Line

learning/tutoring by means of a computer network or
the Internet. The application can be classified as
having a ”three - tier" architecture, the Client part
being represented by the configuration module and
the tutoring material presentation module. The user
connects to the system by means of a Login module,
monitored by an Administrator agent
(CerberusAgent). After authentication the user may
have access to a configuring instrument (if the user
connected to the system is the tutor) or to the user
interface by means of which the learning material
will be presented (if the user is a student). This part
of the application will be monitored by an interface
agent (InterfaceAgent). The application server
contains the agent platform that monitors the student
activity, and a web server responsible for delivering
the learning material to the user interface (Apache
Tomcat). The third level consists of a xml database
(Apache Xindice), which stores information about
the structure of the course, student models, etc.
(Fig.1)

Fig. 1. System’s Architecture

The server component of the application has a double
functionality: agent platform and web server. The
user goes over the content of the course, as the user
interface reacts to his demands and requires the web
server to communicate the html page that
corresponds to the client demand.

Simultaneously, the agent monitoring the student
interface communicates messages to the other agents
involved in the tutoring process, as they react
accordingly. For example, InterfaceAgent may
communicate to TutorAgent a message that requests
initialization of the navigation assistance board. The
tutor agent generates a list of recommended subjects
and communicates it to the interface agent, who will
update the content of the respective board

accordingly. Plus, the student model will be changed
in order to include this information.
When the student proceeds to studying a new subject,
the student interface communicated a request to the
web server that will send the correspondent html
page. A message will be simultaneously sent to
TutorAgent with information related to the subject
previously studied. TutorAgent will update the status
information referring to the learning level the student
reached and will carry out the necessary steps to
update the student model.
The Client consists of two modules:

A maintenance module that allows adding of
new users (be they tutors or students), setting the
level to be reached by a certain student and deleting
the model of a specific student form the database;

An interface module that will interact with the
student and will provide the educational content (plus
a testing sub-module).

The maintenance module is accessible only to the
“tutor”- type users, providing them with a series of
configuration instruments. After performing all
operations requested by the tutor, the changes he/she
proposed will be stored in the xml Apache Xindice
database.

C S DB

H
T
M
L

 Java
Applic.

Bro
wser

Web
Server

Course
s

DB
XML

Apache
Xindice

The student interface module is monitored by the
interface agent, and communication between the Java
application and agents will be carried out using
sockets.

When designing this module one used an instrument
called JACK (Java Agent Compiler and Kernel),
which is a multi-agent application development
system, based on the Java language (actually carried
out as an extension of that), originating in the BDI
Model (Belief-Desire-Intention).

3. THE AGENT STRUCTURE FOR THE SYSTEM

The agent platform that monitors this application
consists of four agents:

CerberusAgent – has an administrator role (verifies
the validity of the user name and password). After
successful authentication it will send a message to
the interface agent who – depending on the type of
user connected to the system - will initiate the
configuration module or the student interface
module;

InterfaceAgent – initializes the application modules,
the student and tutor agents, monitors the student
interface, requests the Tutor Agent initiation of the
navigation assistance board, etc;

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

6

Popa
Line

StudentAgent – monitors the student’s actions and
sends to the other agents messages that contain
information used for updating the student model;

TutorAgent – sends messages for updating the
navigation assistance board, initiation of the testing
phase, etc.

4. THE STUDENT MODEL

A student model is defined as a “representation of the
tutoring system’s beliefs about the student”.
The Student Models can be classified taking into
account a number of factors such as: the manner
they are generated, their content or their application.
Within this section the classification is based on two
factors:
1. Persistence of representation. The beliefs about the
student either cover a short period of time (as long as
the answer to a question, for example), either they are
retained in order to help build a long-term Student
Model. Most intelligent tutoring systems implement
both representations, using the short–term
representation to update the long-term model.
2. Content. Which are those beliefs about the student
that actually model the intelligent tutoring system?
The answer to this question generally depends upon
persistence. Short-term beliefs, by nature, must be
very specific (for example „Student X broke rule Y
of the issue Z”), as they can be observed rather than
observed. Long-term models on the other hand
consist of a much larger proportion of inferred
beliefs. These beliefs may be more abstract also, as
they relate to the knowledge level of the student,
professional misunderstandings or the student
conduct.
The Overlay Models (Fig.2) are long-term models
and they show the expert’s knowledge level related
to a specific domain. The student’s knowledge is
therefore represented as a subset of the expert
knowledge. Moreover, the overlay model can only be
constructed as long as the expert knowledge can be
decomposed in generic units (i.e. rules, facts,
concepts).
The knowledge level of every unit varies from 0
(beginner) to 1 (expert). The expert is represented by
a knowledge level equal to 1 attached to every unit,
while the student attaches to every unit a knowledge
level smaller than 1.

Interestingly, there are two very different approaches
of the knowledge level within specialized literature.
Some systems consider it a binary variable that can
only get the „learned, not learned” values and that
represents the belief that the unit is known. This
could be qualified as a probabilistic approach and is
representative for the intelligent tutoring systems
using Bayesian probabilities for student modeling.

Fig. 2. Overlay Model

On the other hand, the knowledge level may be
interpreted as the current intellectual status of the
student. For example, a 0.5 knowledge level for a
unit means that the system believes that the student
only learned half of it and needs more practice, but is
no longer a beginner; the other approach would have
presumed that the probability for the student to have
learned the x unit were 50%, therefore the initial
status.

It is interesting to also note that a value of 0.5 for a
unit represents the maximum uncertainty state if
probabilistic approaches are used, therefore diagnose
strategies might produce different results, depending
upon the qualification of the measure: probabilistic or
absolute.

An overlay model with a more varied structure that
was used is the differential one. It compares the
student’s level of learning to a value that indicates
the desired knowledge level that the student should
have reached at one time.

The Differential Model is much less restrictive than
the Overlay one, since it considers as significant just
the difference until the desired knowledge level, not
inferring upon the student’s knowledge beyond that
limit.

For example, if the student is expected to know the A
fact, but not the B fact, then – if the student makes
mistakes when proving both A and B, then the
differential model may only infer that the student
doesn’t know A, not being able to infer anything
about B.

In order to store the information about the student
(the student model) and some information about the
educational material (structure, questions, concept
list), one used a xml database. Namely, the 1.0
implementation of the Apache Xindice database was
chosen, as a native xml database designed to store
data in the xml format. The benefits of this solution
relate to the fact that the programmer avoids the
“underground” implication of data storage, as both

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

7

Popa
Line

the information inside the database and the data to be
extracted from it will be in xml format.

Among the multiple facilities of this database there
are: the possibility of interrogating the content of the
database using the Xpath language, the possibility of
updating the information in the database by XMI:DB
Update, the possibility of implementing XML:DB
API for developing Java applications.

The memorized data are grouped in collections of
documents that can be indexed in order to increase
the speed of XPath interrogations’ execution.

The facilities provided by this xml database
recommends it for this type of application, since the
reduced response time and the capacity of storing
data in the xml format are of peculiar importance.

The information necessary for the system’s
functioning are grouped in three collections within
the database: users, model and course.

- The users collection consists of a xml
document that summarizes data about the users:
name, password, type;

- The model collection contains xml documents
that correspond to the model of each student who
uses the application;

- The course collection consists of three
documents: syllabus – the complete structure of the
course, questions – the collection of questions that
will make up the tests and concepts – a concept list.

The student model is that part of the tutoring system
that contains information about the student such as:
the knowledge level mandatory for completing the
course, the position within the course material, etc.

Fig. 3. The Student Model

The first of them comprises of the structure of the
sub-domain that has the knowledge that the student
must acquire for completion of the course, and the
second one consists of a history of the student
actions, used by the tutor in order to set up a strategy
for navigation assistance.

The Student Model within the MTS is an overlay
model and is made up of two documents which are to
be found in the database from the model collection.
The documents are to be found under the label of:
<name_student>_model and <name_student>_log.

5. REPRESENTATION OF THE KNOWLEDGE

The knowledge in the field is represented within the
xml database by a collection named "course" that
consists of three documents:

- syllabus - the complete structure of the course
plus control information;

- concepts – the complete list of questions
together with the necessary explanations;

- questions – the question base for test
generation (with questions, answers, clues to be used
for student assistance).

All of them combined represent the expert
knowledge in the field, which are to be used for
student model generation, his/her knowledge being
therefore considered a sub-set of the expert
knowledge (the overlay type model)
(coe.sdsu.edu/..).

An example from Syllabus:
<domain name =”UML”>
 <part id =”p1” name=”UML and System
Development” link=”Lib0007”>
 <chapter id=”I.1” name=”What is UML
About, Alfie?” link=”Lib008”>
 <topic id=”I.1.t1” name
“Introducting UML” link=”Lib0009”>
 <concept name=”UML” id=”c1”/>
 </topic>
 …
 </chapter>
 …
 </part>
 …
 </domain>

An example from Concepts:
<concepts>
<concept name=”UML” id=”c1”> UML stands for
the Unified Modeling Language.
 </concept>
 <concept name=”Structural Diagrams”
id=”c2”> Structural diagrams are diagrams
that show the building block of the system
features that don’t change with time.
 </concept> …
 </concept>

An exampple from Questions:
<question_base>

<student id="student">
 <event type="creare model"
date="04.05.2004:08:17:55"/>
 <event type="status change" topic="Introducing

UML" status="learned"
date="06.05.2004:20:54:03"/>

 <event type="status change" topic="Appreciating
the Power of UML" status="visited"
date="06.05.2004:20:54:16"/>

 <event type="status change" topic="Appreciating
the Power of UML" status "learned"

<domain name="UML">
 <part id="p1" link="LiB0007" name="UML and

System Development">
 <chapter id="I.1" link="LiB0008" name="What

is UML About, Alfie?">
 <topic id="I.1.t1" link="LiB0009"

name="Introducing UML"
reqt="10" status="2">

 <concept id="c1" name="UML"/>
 </topic>
 <topic id="I.1.t2" link="LiB0010"

name="Appreciating the
Power of UML" reqt="10"
status="2"/>

<topic id="I.1.t3" link="LiB0011"

subject "visited"

subject "learned"
time for answer

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

8

Popa
Line

 <question text="What does UML stand

for?" cor_ans="1" part="1">

 <answer text= "UML stands for the

Unified Modeling Language"/>

 <answer text="UML stands for

Unilateral Marketing Language"/>

 <hint text="It involves

modeling..."/>

 </question>
 ...
</question_base>

6. UTILIZATION SCENARIOS FOR THE MTS

In order to be able to utilize the system, every user
must have a user-name and a password, both of them
valid. After authentication, depending on the type of
user connected to the system, one of the following
modules will be accessed: the maintenance module
(if the user is a tutor) or the student interface module
(if the user is a student).

When the user is a tutor, activating the maintenance
module will provide him/her with the possibility of
adding new users, initiating or deleting new student
models.

When the user is a student, the course material
presentation window will be displayed, and the agent
platform for monitoring the student activity will be
initiated. The student will be able then to read the
course material, request information about a certain
concept, etc.

After going over the recommended material, the
navigation assistance board will be updated by the
interface agent, by request of the tutor agent.

Depending upon the student knowledge level, the
tutor agent may request the interface agent to
initialize the testing sub-module. This may generate a
new test based on the questions within the question-
database. Taking into account the time spent by the
student to answer a question, supplemental clues will
be provided and the final grade will be diminished
accordingly.

After having taken the test, if the results are
satisfactory the student will be allowed to reach the
next level of the course. If the results are negative
(below a certain established limit), the display of the
navigation assistance board will read “Testing”, the
student being unable to reach the next level until the
test gets a positive grade. After finalizing going over
the course material, the student will be congratulated
upon completion of the course.

Figure 4. Utilization Scenarios

Exemple: The schedule used by InterfaceAgent for
the initialisation of the TutorAgent.

import java.util.Vector;
import util.GestionarModel;
import util.XMLHelper;
plan InitTutorAgentPlan extends Plan{
 #handles event InitTutorAgentEvent
initEvent;
 #uses interface TutorAgent self;

 body(){
 System.out.println("TutorAgent init:
"+initEvent.username);

self.tutorData =
XMLHelper.getDOMAsVec
tor(initEvent.usernam
e.trim());

 self.topics =
XMLHelper.getTopics(initEvent.username.trim(
));

self.partLimits =
XMLHelper.getPartLimi
ts(initEvent.username
.trim());

 Vector links =
(Vector)self.topics.get(1);
 self.lastLink =
(String)links.get(links.size()-1);
 self.currentPart =
XMLHelper.getCurrentPart(self.username);

 self.lastPart=((Vector)self.partLimit
s.get(0)).size();
 self.checkSum=0;
 self.test1=false;
 self.test2=false;
 }
}

7. CONCLUSIONS

The presented system is a prototype of an intelligent
tutoring system using software agents. Its purpose is
to “model the student”, by student being understood
any individual undertaking a learning process. This
approach over the design of a multi-agent system

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

9

Popa
Line

originated from the separation of roles in a process of
assisted tutoring, which led to defining the systems’
agents together with their responsibilities. These
roles are static all along the system’s execution.

The MTS was tested on disciplines and students in

onsequently, the next objective aiming to ease the

REFERENCES

Intelligent Tutoring System
tml/agents.html

Computer Science, presuming XML knowledge for
the introduction of new disciplines and tests.

C
utilization of the system will consist of designing an
agent that will provide assistance for the tutor during
uploading the information (the course material) and
elaborating the tests for specific domains.

s-

http://www.aaai.org/AITopics/h

tutoringsystem/start.h
Intelligent Tutoring Systems –
http://coe.sdsu.edu/eet/Articles/
tml
Kelly, D., Tangney, B.- Using Multiple Intelligence

1,

Martin, n Agent
 Journal,

nts – An Overview-

 Informed Resources in a Adaptive Systems,
 Intelligent Tutoring Systems: 8th
 International Conference, pp. 412-42
 Jhongli,Taiwan, 2006

D, et al. (1999), The Ope
 Architecture, Artificial Intelligence
 vol.13
Software Age
www.davidreilly.com/topics/software_agents
UMBC Agent Web: http://www.cs.umbc.edu/agents
http://www.contrib.andrew.cmu.edu/~plb/AIED97_w
orkshop/Brusilovsky/Brusilovsky.html
Weiss, G., (1999), Multi-agent Systems, A Modern
 Approach to Distributed Artificial
 Intelligence

THE ANNALS OF “DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2007 ISSN 1221-454X

10

http://www.davidreilly.com/topics/software_agents
http://www.davidreilly.com/topics/software_agents
http://www.cs.umbc.edu/agents
Popa
Line

