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Abstract: The method proposed in this paper uses the Independent Component Analysis (ICA) 
for an application of unsupervised recognition of textures. The analysed texture is modelled by  
a weighted sum of almost statistically independent random signals that are extracted with 
FastICA algorithm. Each resulting signal is described by its negentropy, more precisely, by one 
of the approximations used by FastICA algorithm. The approximated negentropies are sorted 
into descending order and represented by a curve. The final step of the algorithm is the 
averaging of a certain number of such curves obtained from different zones of the texture. The 
resulting mean ”negentropy curve” displays a good discriminating power on the tested textures. 

Index Terms: Independent Component Analysis,  Negentropy, Pattern Recognition, Texture. 

1. TEXTURE RANDOMNESS 

As regular as a natural texture may look for human sight, 
it is nevertheless a random process. The textures’ 
randomness has many causes. Among others, these 
causes influence the size of texture’s constituents, their 
orientation, relative position etc. Often, in textures, the 
randomness' sources are statistically independent simply 
because they interfere in different steps of the texture’s 
formation or because they are related to its different 
constituents. We are also allowed to think that, due to the 
large variety of the natural textures, the statistical 
characteristics of these sources vary from case to case. 
Moreover, since the sources are rarely stationary, 
variations of these characteristics often appear over the 
same texture. Briefly, since a set of conditions is never 
perfectly reproducible, two natural textures, even of the 

same type, may never be identical from the statistical 
point of view. This means that the analysis of the 
random sources in texture images may give the 
possibility to discriminate among textures. And if this 
analysis is fine enough, it may be possible to 
discriminate even among patches of the same texture. 

ICA (Independent Component Analysis) is a 
mathematical tool that can extract statistically almost 
independent components from an image. Originally, the 
ICA has been used for source separation - the so called 
"cocktail-party problem"-, i.e., individualization of a 
known number of statistically independent signals from 
some mixtures of them. A classical example is the 
separation of three simultaneous speakers recorded by 
some microphones held in different locations 
(Hyvärinen, et al., 2001).  
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Woolen cloth Grass

Beach sand Raffia

 

Fig.1. The analysed textures: “Wool cloth”, “Grass”, 
“Beach sand”, “Raffia” (1024x1024 pixels, 8 
bits/pixel). 

In image processing, the ICA has already been used 
successfully for human faces recognition (Draper, et al., 
2003), (Stan, et al., 2005), (Moghaddam, 2002). Such 
applications have two steps: first, a learning stage when 
a base of primitive faces is created by using a training 
set. Then the recognition takes place: each new face is 
decomposed on this base and the resulting coefficients, 
i.e., the independent components, are compared with 
those of the probe faces. The ICA has seldom been 
applied to textures' classification; in one of the rare 
occurrences that can be found in the literature (Jenssen, 
Eltoft, 2003), for instance, the texture segmentation 
method with ICA relies mainly on the similarities with 
the classical approach based on the Gabor transform. 

In this paper, we show that, by using ICA, a texture may 
be reduced to a few  statistically almost independent 
components - still called "sources", even if the original 
meaning is no longer the same -, specific enough to 
allow texture’s recognition. The texture recognition 
method based on ICA, that we propose belongs to the 
unsupervised type, i.e., without any learning step.  

The paper is organised as follows: in Section II, the 
principle of ICA is recalled and an equation 
approximating the negentropy from source’s samples is 
given. Then, in Section III, we present our method and 
some experimental results. These results provide 
evidence that the sorted negentropies of the sources 
derived by ICA constitute a feature with a high potential 
in the applications of texture recognition and 
classification.      

2. ICA AND SOURCE NEGENTROPY 

In applications of sources separation, the ICA 
decomposes a random signal into a weighted sum of a 
certain number of signals whose characteristic is to be 
the less Gaussian possible. The resulting signals 
represent the independent components, also called 
sources of the signal. Nongaussianity guaranties the 
independence, since, according to the Central Limit 
Theorem, the sum of many independent, identical 
distributed random variables tends to be Gaussian. In 
other words, the sources of a signal must be more 
nongaussian than the signal itself.  

 

Fig.2. Nine sources of “Wool cloth” texture: s1, s5, s9, 
s13, s18, s23, s28, s31 and s32, in the descending 
order of the negentropy (from top to bottom and left 
to right). 

Depending on the signal, the sources extracted by ICA 
may be completely independent or may preserve a 
certain mutual information. 

There are different algorithms for obtaining the sources 
of a signal. Each one optimizes a specific criterion, 
depending on the way the independence condition is 
given. For instance, if the degree of statistical 
independence is expressed by source nongaussianity, 
then the criterion may be their negentropy, a measure 
whose definition is given next.  

It is known that, among all possible distributions with a 
given covariance matrix, the Gaussian one has the 
highest entropy (Hyvärinen, et al., 2001). Due to this 
property, the entropy may be used to define a measure  
of the nongaussianity of sources, , called 
negentropy and defined as follows (Hyvärinen, et al., 
2001): 

( )sJ

(1) ( ) ( ) sss HHJ Gauss − ( )=                  

where ( )sH  is the entropy of a source s  and ( )sGaussH  
is  the entropy  of a Gaussian source with the same 
covariance matrix as .  s

Definition (1) shows that negentropy is a nonnegative 
quantity. It is zero only for Gaussian sources. The 
FastICA algorithm that we use looks for independent 
components, by maximizing the negentropy (Hyvärinen, 
et al., 2001). Since it is rather difficult to estimate the 
negentropy by using its definition (a large number of 
samples would be necessary for a good estimation of the 
conditional entropies in ), the FastICA uses 
approximations of it, one of them being (Hyvärinen, et 
al., 2001): 
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samples of the source . s
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Fig.3. The negentropies of “Wool cloth” sources, 

represented in the same order as the sources in 
matrix S. 

In deriving the sources of a random signal , FastICA 
starts from a set of particular realizations of x . These 
realizations are collected in a matrix

x

X , each row of X  
containing the samples of a particular realization. By 
iterations, FastICA decomposes X  into a product of two 
matrices, A  and  (Hyvärinen, et al., 2001): S

 (3) ASX =                                  

where the rows of   contain the signals’ sources, given 
by their samples (each row consists of samples of the 
same source). The factorization (3) is optimal in the 
sense that the rows of  have a maximum of statistical 
independence or, equivalently, maximum negentropies. 

S

S

If we denote by , the rows of , by  the elements 

of 
js S jia ,

A  and by , the rows ofix X , the equation (3) may be 
re-written in the following way: 

(4) ∑=
j

jjii sax ,  

expressing each particular realization of X  as a linear 
combination of sources  (as stated in the beginning of 
this section). 

is

The sources  are all of unit variance and have an 
undetermined sign; their order in matrix  is also 
irrelevant. The number of samples of each source is the 
same as that of a particular realization in 

is
S

X  (a natural 
constraint for having compatible dimensions in matrix 
product (3)). On the contrary, the number of sources  
is a parameter that must be fixed by the user. For a series 
of applications, this number is known a priori. When it is 
not known, it may be estimated from the covariance 
matrix of 

is

X . In such cases, the source number is taken 
equal to the number of eigenvalues accounting for more 
than 90% of the signal energy. 

3. TEXTURE ANALYSIS BY ICA 

The reasoning made in Section I has encouraged us to 
consider that a texture is a mixture of many random 
signals, with a rather high degree of statistical 
independence.  
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Fig.4. The negentropy curve: first zone (dotted line), 

second zone (dashed line), mean curve (continuous 
line). 

As we have seen in Section II, some of these signals may 
be extracted by applying an ICA.  

In order to build matrix X , which is the starting point 
for ICA, one needs more particular realizations of the 
analysed texture. 

In our experiments, the particular realizations come from 
64 adjacent patches of 25x25 pixels with zero mean. The 
patches, once serialized, constitute the rows of X . In a 
first stage, 10 sources were extracted. As initial guess for 
A, we took a matrix with all elements equal to the unity. 
Thus, neither a source, nor a mixture was privileged.  
The tests have been done on the four textures in Fig. 1 
representing, respectively, wool cloth, grass, sand and 
raffia trellis. These texture images -taken from SIPI 
database (http://sipi.usc.edu/database)-, are scanned 
prints from Brodatz album. The sources extracted by 
ICA are given by their samples (in our case, 625 samples 
for each source). By reshaping each source’s samples in 
a 25x25 pixels image, one gets the 10 “sources” of the 
considered zone. For “Wool cloth”, nine sources are 
shown in Fig. 2. 

Statistically, a source may be described in many ways: 
by samples, histogram, moments etc. Among all possible 
representations, we have chosen to describe the sources 
by their negentropy. The reasons were the compactness - 
the negentropy is a simple numerical value - and, 
moreover, the fact that it represents the measure 
optimized by the FastICA algorithm. In order to compute 
our 10 negentropies, we did not use the definition in (1), 
but the approximation given in (2), also used by 
FastICA. The reason of this choice has been given in 
Sec. 2.  

The raw sequence of negentropies (as found in matrix 
), is plotted in Fig. 3 for “Wool cloth” texture. Such a 

curve, without any obvious trend, is difficult to interpret. 
However, since ICA does not extract the sources in a 
specific order, the negentropies can be sorted in a 
decreasing order. With this new representation (Fig. 4, 
solid line), we can see that five sources have a 
negentropy higher then 0.25, while the last ones are 
rather close to the Gaussian distribution.  

S
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Fig.5. Two mean negentropy curves corresponding to the 

upper and lower halves of  “ Wool cloth” texture. 

As a Gaussian source may hide other sources (according 
to the Central Limit Theorem), for the purpose of texture 
recognition, one has to look mainly at high negentropy 
sources. The negentropy curves, obtained for another 
zones (Fig. 4), show some variations compared with the 
first one. Two possible explanations for these variations 
are the differences existing between the considered 
zones due to the texture unstationarity and the estimation 
error (the sources have been estimated from 64 patches 
and the negentropy from 625 samples). 

In order to reduce this effect, we have averaged eight 
negentropy curves from eight not superposed zones. The 
mean curve characterizes an area of 8x64x25x25 pixels, 
which is equivalent to a squared patch of texture of about 
550x550 pixels. The mean curves for the upper and the 
lower halves of the “Wool cloth” texture are shown in 
Fig. 5. Although slightly less important, the differences 
still exist. This time, we explain them mainly by the 
texture unstationarity. We shall use further the mean 
negentropy curve to characterize a texture.  

As already mentioned in Section II, the number of 
sources is imposed by the application, not by the 
algorithm. Since the textures are signals with a high 
degree of complexity, theoretically, one may extract a 
very large number of sources. However, by considering 
that only the most nongaussian sources are significant 
for the texture identity and, besides, that noise is present 
in any image of natural texture, an upper limit for the 
number of sources should be imposed. In the case of our 
textures, we have limited the extracted sources to ten, a 
number equal to the number of eigenvalues responsible 
for more than 55% of the patches’ energy.  In order to 
assess the discrimination capability of the negentropy 
curve among different textures, we have derived it for 
“Beach sand”, “Grass” and “Raffia” (Fig. 6). 

Like for the “Wool cloth”, 64 patches of 25x25 pixels 
were used to extract ten sources. Eight negentropy 
curves were averaged in each case. One may observe 
important differences all along the curves, especially in 
the domain of high negentropies.   

The results shown on Fig. 6 confirm that the 
negentropy’s mean curve is a feature with a rather high 
discriminatory potential for textures.  
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Fig.6. The negentropy mean curves for “Wool cloth” 

(continuous line), “Raffia” (dashed line), “Sand” 
(dotted line) and “Grass” (dashed-dotted line). 

This feature can be used in applications like recognition 
or classification, but it is less appropriate for textures' 
segmentation because its precise estimation requires a 
large zone. For instance, in our tests, we used a zone of 
8x64x25x25 pixels which is equivalent to a squared area 
of about 550x550 pixels. 

4. CONCLUSIONS AND FURTHER 
DEVELOPMENTS 

The method proposed in this paper is based on the 
assumption that a texture may be modelled as a linear 
combination of many random signals, with a rather high 
degree of statistical independence. Under this 
hypothesis, a number of components is extracted by ICA 
from each analyzed texture. In order to have a significant 
and compact description of these components, their 
negentropies are estimated from samples. The obtained 
values are ordered and represented by a descending 
curve that is designated by “negentropy curve”. The tests 
have shown that this curve is specific to each texture 
and, therefore, that it can be used as a discriminatory 
feature in applications like recognition and classification.  

Our conclusions are based only on a visual evaluation of 
the negentropy curves. In order to have a complete 
recognition method, one has to provide also a well-
adapted distance.    

Even if the results obtained so far are promising, 
adjusting parameters like patches’ size, number and 
placement should reduce the standard deviation of the 
negentropy curve. Besides, some other ways should be 
considered for the description of the texture independent 
components.          
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