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Abstract: Target location is coded into the pattern of spikes that run up the auditory 
nerve to the bat's brain.  Realistic scenes containing multiple, closely spaced, reflectors 
give rise to complex echo signals consisting of multiple filtered copies of the bat's own 
vocalisation.   Some of this filtering is due to the directivity of the bat’s reception 
system i.e., the outer ears, and some of it is due to sound absorption and the reflection 
process.  The analysis below  concentrates on the conspicuous ridges (notches) these 
filter operations give rise to in the time-frequency representation of the echo as 
produced by the bat's inner ear.  Assuming multiple threshold detecting neurons for 
each frequency channel it is shown how the distribution of spike times within the 
generated spike bursts is linked to the presence and characteristics of these notches.  A 
neural network decoding the spike bursts in terms of target location is described.  

Keywords: Auditory system, Neural networks, Robot sensing systems, Sonar signal 
processing,  

1. INTRODUCTION  

 
Bats when flying in a natural environment, e.g. a 
forest, are routinely confronted with large numbers of 
(randomly) distributed scatterers of various sizes, 
shapes and orientations. Hence the bat receives at 
both ears a complex echo composed of many closely 
spaced and hence interfering echoes. Nevertheless, 
they manage to extract the spatial information they 
need in order to maneuver with great skill through 
their environment while at the same time using their 
sonar to hunt for prey (Popper and Fay, 1995).  
Hence, mobile robot researchers desiring to 
implement navigation in realistic outdoor 
environments  i.e., containing trees, and other natural 
vegetation, while solely relying on in-air sonar 
systems have recognized these bio-sonar systems as 
interesting sources of inspiration (Reijniers and 
Peremans, 2004). We believe that understanding 
better how bats achieve this impressive performance 
is a worthwhile exercise for engineers also. 

The importance of spectral information for bats is 
well established: their inner ear performs a joint 

time-frequency analysis of the received echoes, as is 
the case for all mammalian cochlea’s  (Pickles, 1982) 
Moreover, experiments have shown that bats do 
indeed complement the binaural Inter-aural Intensity 
Differences (IID) and Inter-aural Time Differences 
(ITD) clues with information extracted from the 
systematic variations in the spectrum of the received 
echo depending on the spatial position of the 
reflecting target (Wotton et al., 1995). This direction 
dependent filtering is to a large extent caused by 
diffraction of the sound waves around the particular 
shape of the bat outer ear and head (Müller and 
Hallam, 2005), corresponding with the Head Related 
Tranfer Functions (HRTF) studied in human hearing 
research.  

In this paper we describe a bio-inspired time-
frequency representation of received, monaural, echo 
signals and show how this representation allows the 
extraction of target bearing information both when 
confronted with single, isolated reflectors as well as 
with complex, multifaceted, reflectors. Furthermore, 
it will be shown that monaural HRTF information is 
sufficient for these purposes.  

In   Sec.2   we   describe  the   bio-inspired     time-                            
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frequency representation. Next, we develop our 
approach in Sec.3 Finally, in Sec.4 we describe 
experimental results obtained with this sonar system. 
In Sec.5 we summarize our findings. 

 
 

2.  SPIKE CODED SPECTROGRAM 

2.1 Realistic reflector model 

Realistic reflectors consist of multiple closely 
spaced reflecting facets e.g., the leafs of a tree.  
Hence we introduce the 6-tuple model 

),,,,,( ielaziirefl raN θαα  for a realistic reflector 

(Reijniers and Peremans, 2004), with Nrefl the number 
of reflecting facets, ),,,( ielazir θαα the polar 
coordinates with respect to the sonar system as 
illustrated in Fig. 1 and ai the strength of the echo 
reflecting of the ith facet.    
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Fig. 1. 2D view of a realistic reflector modeled as a stochastic 
cloud of point reflectors 

 
For the simulation results presented below we 

choose the distributions for these stochastic 
parameters: 

 )0],60,0[~,],5.0,1.0[~],7,1[~( =ielazirefl UUaUN θαα oo

 
  Hence, when transmitting the signal s(t), the echo 

signal r(t) received from such a reflector can be 
written as   

∑
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with speed of sound given by vsound and angular 
dependent filtering (HRTF) denoted by 

),,;( ielazrectr th θαα− . We assume here that the HRTF 
is mostly due to the outer ear. 

 2.2  Spike coded spectrogram  representation 

The joint time-frequency analysis performed on 
the incoming signal is modeled on the transduction 
stage located in the inner ear (cochlea) of the bat.  A 
simple, yet functionally adequate, model of this 
analysis (Siallant et al., 2005) is a filter bank 
consisting of parallel band-pass filters with 
subsequent amplitude demodulation in each channel.  
This model is illustrated in Fig. 2 showing the output 
when the received echo signal consists of two 
identical, shifted copies of the transmit pulse: 
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Fig. 2.  (a) A simple inner ear model leads to (b) a spectrogram 
representation of the received echo signal (blue: low amplitude, 
red: high amplitude), filtering due to complexity reflector. 

 
 

As illustrated by Fig. 2(b), when the target is no 
longer a single point reflector the echo signal will be 
a filtered version of the transmit pulse.  However, 
from (1) we conclude that in addition to the filtering 
due to the complexity of the reflector the real 
spectrogram will exhibit extra features due to the 
angular dependent filtering of the outer ear.  Fig. 3 
shows how even a single point reflector can return a 
filtered copy of the transmit pulse where the filtering 
is now location dependent. 
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Fig. 3. Spectrogram representation of the received echo signal 
(blue: low amplitude, red: high amplitude), filtering due to the 
outer ear. 
  

This location dependency of the outer ear filtering 
is the phenomenon we want to make use of to 
localize targets.  Looking at the spectrograms shown 
in Fig. 2(b) and Fig. 3 the most prominent features 
are the notches i.e., the weak response regions.  
Hence, tracking the movements of these notches (Fig. 
3) as the target moves around in the sonar system’s 
field of view will allow the classifier described below 
to correctly locate the target if it can ignore the 
notches (Fig. 2(b)) caused by the complexity of the 
reflector.   Also, it has been suggested that these 
notches are indeed important clues for elevation 
estimation by bats (Wotton et al., 1996). 

However, it should be noted that the information 
in the spectrograms shown here is not available to the 
bat.  Indeed, the inner ear produces patterns of neural 
spikes and sends them up the auditory nerve into the 
bat’s brain.   Hence, to keep the model biologically 
plausible we perform a final spike conversion.  A set 
of thresholds is applied to the output of each 
frequency channel producing a spike whenever the 
up-going edge of the signal crosses one of the 
threshold levels.  Combining these spikes into one 
spike train for each frequency channel (see Fig. 4) we 
take this set of spike trains as input for the target 
localization system.   As can be seen by comparing 
Fig. 4 (a) and (b), both the number of spikes in a 
spike train as well as their relative positions code for 
the shape of the output of the respective frequency 
channels. 
 
 

3. TARGER LOCALISATION 

3.1. Distinguishing spike trains 

To distinguish between spike trains i.e., quantify the 
difference between the spike trains shown in Fig. 4 
(a) and (b), we require a distance measure.  Hence, 
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Fig. 4.  Running the spectrogram representation of Fig. 2 (b) 
through a set of threshold detectors (red lines indicate threshold 
levels) results in a set of spike trains, one for each frequency 
channel; (a) 44kHz , (b) 93kHz. 

 
let S be a spike train i.e., an ordered sequence of 
times t1, t2, … , tk, denoted by .  We 
can then, as detailed in (Victor and Purpura, 1997), 
define the metric D(S

{ }ktttS ,,, 21 L=

a ,Sb) as the minimum ‘cost’ 
required to transform the spike train Sa into the spike 
train Sb via a path of elementary steps where 

 is equal to the cost of an elementary 

step from S
0),( 1 ≥−jj SSK

j to Sj−1   
 

    (3) 
bra
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The elementary steps that are allowed to transform 
one spike train into another are: inserting a single 
spike (cost = 1), deleting a single spike (cost = 1) and 
 shifting a spike by ∆t  (cost = q.|∆t|) with q 
a parameter that controls the trade-off between 
inserting/deleting spikes and shifting existing spikes.  
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One such path of elementary steps transforming 
spike train Sa into the spike train Sb is shown in Fig. 
5. 

 
 

Fig. 5.  Path of elementary steps to transform spike train Sa into 
spike train Sb. 

It is shown in [8] that this procedure does indeed 
result in a mathematically well defined distance 
function. 

3.2.  MDS  pre-processing of spike trains 

Using standard Multi Layer Perceptron (MLP) 
networks to localize a target, the spike trains cannot 
be used for input directly. Doing so would make the 
dimension of the input space too large and thus 
prohibit convergence of the training of the MLP 
network.  Hence, we introduce a pre-processing step 
to reduce the dimensionality of the input to the 
classifier.   We chose to use a Multi Dimensional 
Scaling (MDS) approach to map the distances, 
calculated with the procedure described above, 
between a new spike train and a set of prototype 
(fixed) spike trains into a 3D metric space.  The 
coordinates in this 3D space are then used as input to 
the MLP classifier. 

The prototype spike trains are chosen in the 
following manner.  Starting from the spatial 
sensitivity pattern of the sonar system i.e., its 
directivity, at the central frequency of each channel 
in the inner ear model, we determine the most 
sensitive and the least sensitive location (see Fig. 6).  
Next we choose 5 intermediate locations on the line 
connecting these two points.  Together, the spike 
trains corresponding with these 7 points make up the 
set of prototype spike trains for this frequency 
channel.   By selecting the prototypes in this manner 
we ensure that the different filter operations 
performed by the outer ear in the frequency band 
covered by this frequency channel are reasonably 
well represented by the prototypical spike trains.  The 
same procedure is repeated for all frequency 
channels.  
Once the prototypes for all frequency channels have 
been selected the MDS pre-processing step can be 
executed.    

 

 

Fig. 6.  Selection of prototype spike trains (blue circles) spanning 
the full range of the 60 kHz frequency channel’s possible 
responses. 

This results in a 3D representation for each spike 
train produced by every frequency channel in the 
inner ear model.  Hence, every new received echo 
will be mapped onto a vector of dimension=Nfreqx3, 
with Nfreq the number of frequency channels in the 
inner ear model.  This vector will be the input to the 
MLP classifier. 

As stated before, real targets will not be single point 
reflectors, hence it is instructive to study to what 
extent the complexity of the reflector will affect the 
quality of the target localization.  Indeed, as indicated 
by (1), in addition to the filter associated with the 
directivity, complex reflectors introduce additional 
filtering which will also affect the spike train.  

 

Fig. 7.  Clusters formed in the metric 3D space of a typical 
frequency channel after MDS pre-processing of the spike trains 
generated by targets of varying complexity at fixed positions.  The 
(az,el)-pairs indicate the position of the complex reflector. 
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Fig. 7 shows a result of a simulation study that varied 
the complexity of reflectors at various places in the 
field of view of the sonar system.  Similar results are 
obtained when processing the spike trains generated 
by the other frequency channels.  Hence, we 
conclude that although the complexity of the reflector 
will place a limit on the accuracy of target 
localization i.e., the size of the clusters, it will not 
make useful localization impossible.  

 
 

4. EXPERIMENTAL RESULTS 
 
Simulation experiments were performed using 

monaural spectral information only.    The HRTF 
was taken from a simulated Nyctalus Plancyi outer 
ear (Müller and Hallam, 2005).  As described above, 
an MDS pre-processing step to lower the 
dimensionality of the classifier’s input space was 
applied to the spike trains produced by the inner ear 
model.  From the set of frequency channels 
calculated by the full inner ear model we mapped 20 
frequency channels evenly distributed over the full 
frequency range (30-130kHz).   A set of 20x3 
training vectors was created by varying the 
complexity of the target as well as its position.  

Two standard MLP networks with 1 hidden layer 
were trained following a batch method using a 
Levenberg-Marquardt minimization of mean-square 
error criteria.  The output of the two networks was 
respectively the azimuth and the elevation estimate of 
the target.  Separate networks were chosen to allow 
studying azimuth and elevation estimation separately.  
Optimization of the network architecture was 
performed for one channel and the result was used in 
the other channels. The fully connected network 
consists of 20 neurons with sigmoid activation in the 
hidden layer. The output neuron has linear activation.  

 
 

 
(a) 

 
(b) 

Fig. 8.  Target location estimation errors as a function of location: 
(a) box and whisker plot of elevation error, (b) box and whisker 
plot of azimuth error. 
   
Behavioural experiments on bats indicate that 
monaural information results in fairly good elevation 
estimation whereas binaural information seems to be 
required to get good azimuth estimation.  The results 
shown in Fig. 8 (a) and (b) are in good agreement 
with this empirical observation by indicating an 
average elevation error of  ~2.5° which is 
considerably smaller than the average azimuth error 
of  ~5°.  

5. CONCLUSION 
 

In this paper it is shown that target localization based 
on spike coded spectrograms is feasible. The 
information used by the sonar system is the self-
induced i.e., by the outer ear, filtering that varies 
systematically with azimuth and elevation. It is also 
shown that the method described here can cope with 
moderately complex reflectors i.e., up to 7 closely 
spaced glints, despite the additional filtering such 
reflectors give rise to.   To be able to work with spike 
trains as produced by a first order model of the bat’s 
inner ear a dimension reducing MDS pre-processing 
step was proposed.  This allows standard MLP 
networks to localize the target, both azimuth and 
elevation, with realistic and useful accuracy.  
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