
THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

ELECTROTEHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

This paper was recommended for publication by Viorel MINZU
12

PEDAGOGICAL KNOWLEDGE MODEL BASED ON CONCEPTUAL
GRAPHS AND ONTOLOGY

Diana STEFANESCU, Emilia PECHEANU, Adina COCU

Department of Computer Science,
University “Dunarea de Jos” of Galati

Str. Domneasca nr. 111, Galati 800201, Romania
phone (+40)/0236/460106

E-mail: Diana.Stefanescu@ugal.ro, Emilia.Pecheanu@.ugal.ro, Adina.Cocu@ugal.ro

Abstract: Intelligent educational systems are knowledge-based systems (KBS) they can
be developed by a generic knowledge-based system development methodology. In this
paper, we present an ontology-based approach for formalizing different knowledge
types. The formalism is based upon conceptual graphs. A priority concern to all
research work in adaptive education is that of finding an appropriate representation for
pedagogical knowledge. For implementation, we use the CoGITaNT environment
(Conceptual Graphs Integrated Tools allowing Nested Typed graphs), a library of C++
classes (open-sources, developed by LIRMM CNRS, France) allowing the development
of applications based on the CG knowledge representation scheme.

Keywords: Intelligent educational systems, Pedagogical knowledge modeling,
Conceptual graphs.

INTRODUCTION

With the spectacular change that the Web brought to
information access worldwide courseware authoring
is acquiring a new sense. Web-based authoring
courseware could be perceived as a gateway
providing personalized access to a variety of Web
educational materials.

The new educational systems must integrate artificial
intelligence techniques, new technologies
(multimedia and Internet), a large array of methods
and tools in way that breaks with traditional linear
instruction design.

Efficient educational systems should be based on
adaptability and reusability. Such intelligent
educational systems are knowledge-based systems

(KBS) they can be developed by a generic
knowledge-based system development methodology.

Explicit representation of domain knowledge (in the
subject being taught) and pedagogical knowledge
(how to teach this material) are the two most
intensive and complex tasks in building an
educational system (Stefanescu et al., 2001).

 There is a lack of formalism to express structure,
sequencing, presentation and pedagogical uses of the
domain content as well as the learning processes
involved in it.

In this paper, we present an authoring system and an
ontology-based approach for formalizing different
knowledge types. The system – still under
development - allows to define domain knowledge

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

and pedagogical knowledge base with conceptual
graphs.

It should be pointed that the presented system still
constitute a rather small steam inside the indeed
authoring system. Our intention is to prove that
conceptual graphs represent a suitable formalism for
constructing domain ontology and pedagogical
ontology and for reasoning.

2. CONCEPTUAL GRAPHS BACKGROUND

Conceptual graphs (CGs) is a knowledge
representation model (a kind of semantic networks)
introduced by J.F. Sowa [1], which uses graphical
representation as a method of encoding knowledge
and also support computation and automatic
reasoning.

2.1. A brief introduction

The CG model is an abstract model which can be
used at different levels:

- At a conceptual level, it can be the basis for a
specialized communication language between
specialists of different domains involved in a
common cognitive work;

- At an implementation level, it can be the basis
for a common representation tool used by
several modules of a complex system,
integrating knowledge and databases, inference
engines, human-computer interfaces, learning
modules, etc.

A CG is a finite, connected (or not), bipartite graph:
there are only two kind of nodes - concepts and
conceptual relations – and every arc must connect
two nodes of different kinds. In a CG, concept nodes
are used to represent entities, attributes, states and
events, while conceptual relation nodes are used to
show how these concepts are related to each other.

CG can be denoted using different representation
types:

- Diagrammatic (graphic, display) form – concept
nodes are drawn as boxes, relation nodes as circle
and arcs as arrowed (or labeled) links connecting
these.

- Linear form – a text-based representation, where
concept nodes are abbreviated to square brackets,
and relation nodes as rounded parenthesis (a no
normative representation for human readability; a
normative representation - CGIF (CG Interchange
Format) – for computer readability).

The CG model is also provided with a formal
semantic in mathematical model theory. This is

useful to design correct reasoning mechanisms on
knowledge expressed.

2.2. The support (the ontology)

Any CG has no meaning in isolation (Chein et al.,
1992; Sowa, 2000); a CG is related to a support,
which defines syntactic constraints and provides
background information on a specific application
domain. The support role is to group:

- A set of concept types, representing a AKO (a-
kind-of) hierarchy and allowing multiple
inheritance. The set of concept types can be (or
not) structured in a lattice, with:
- ≤ as order, determined by the subtype

relation;
- Τ an supremum as universal type;
- ⊥ an infimum as absurd type;
- ∧ as lower bound and ∨ as upper bound);

- A set of relation types (structured or not in a
lattice);

- A basis, a set of star graphs, showing for every
relation type what kind of concept types it can
link;

- A set of markers for concept nodes: one generic
marker ∗ (for unspecified entities of a given
type) and individual markers (to distinguish and
name distinct entities, instances);

- A conformity relation, which defines association
constraints between a concept type and a marker.

The support provides domain application ontology
(domain concepts and domain relation), while a CG
represent a proposition (assertion, fact or rule
hypothesis or rule conclusion) related to this
ontology. Without any predefined concept or relation
types, CGs are as ontologically neutral as predicate
calculus.

In a CG, the concept node is labeled with:

- The name of concept type

- The referent of concept type:

- An generic or an individual marker (simple
CG);

- Another CG, named context (nested CG).

In a CG, the relation node is labeled with name of
conceptual relation.

A knowledge base is composed of a support (domain
ontology), a set of CGs (called facts) and (eventually)
a set of rules (also represented by CG hypothesis and
CG conclusion).

13

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

2.3. Logic interpretation

Sowa proposes (Sowa, 2000) to associate with every
CG a well formed formula, based of the Φ operator.
The translation of conceptual graphs to first-order
logic is done according to certain rules. In logic, the
implication operator determines a generalization
hierarchy: if a graph or formula p implies another
graph or formula q, then p is more specialized and q
is more general. (It's also possible that p and q are
logically equivalent.).

We found two basic approaches for CG model and
reasoning:

- CGs as a graphical representation of logic;
reasoning by logical prover (Prolog+CG);

- CGs as a graph-model; reasoning by graph-
operation (CoGITaNT).

The second approach is adopted in our work.

2.3. Reasoning in conceptual graph formalism

Since 1991, RCR team (Knowledge and Reasoning
Representation team) from LIRMM (Computer
Science, Robotic, Microelectronic Montpellier's
Laboratory) has been studying CGs as a graphical
knowledge representation model, i.e. a model that
uses graph-theoretic notions in an essential and
nontrivial way.

The aim of knowledge graphical descriptions and
reasoning mechanisms consists in providing an
interesting alternative to the classical first order logic
knowledge representation model.

The key in reasoning with conceptual graph is the
operation of specialization/generalization (graph
subsumption, equivalent with logic subsumption):

- Let us give the elementary specialization
operations and dual elementary generalization
operations (both named also formation rules) are
internal operations on the set of CG:
- simplify – addition of twin conceptual

relation nodes;
- restrict – extension of concept nodes or

relation nodes
- join – split.

- The projection operation (a graphs morphism) -
a specialization sequence - which permits the
design of reasoning mechanisms which are
sound and complete with respect to deduction in
first order logics (Mugnier et al, 1996) for
simple graphs, (Mugnier, 1995) and for nested
graphs. A rule application is also based on graph
morphism.

The specialization relation is denoted by . Let two
conceptual graphs (G and H) and G H. In this
case, we have:

≤
≤

- G is a specialization of H; H is a generalization
of G.

- There exists a projection from H to G.

3. CoGITaNT ENVIRONMENT

For implementation, we use the CoGITaNT
environment (open source, developed by RRC –
LIRM team), a library of C++ classes allowing the
development of applications based on the CG
knowledge representation scheme.

This library is not addressed to the end-user, but it
can be used for development of conceptual graph
based applications. The environment is made as
modular as possible: the library module, the server
module and the interface module.

CoGITaNT provides un object-oriented model for
conceptual graphs (Chein, et al, 1992; Mugnier, et al,
1996; Mugnier, 1995). It provides classes (in the
sense of structures + methods) for Conceptual Graph
(CG), the main CG operations, the CG forms,
Ontology and input/output operations.

Each object has an associated class:
cogitant::Object, with sub-class
cogitant::Support, cogitant::Graph,
cogitant::ConceptType, cogitant::Concept,
cogitant::Edge, cogitant::Operation,
cogitant::CoreferenceClass,
cogitant::Rule.

Class cogitant::Environment is the more
general class, which groups the support, graphs, rules
and operations related to the support.

Main advantages to use CoGITaNT are:

- The client/server architecture, which enables
distance-operating based TCP protocol;

- The portability: CoGITaNT can be used under
Windows or UNIX operation systems, with
different compilers. We have used CoGITaNT
under Linux (Cygwin) operating-system and
GNU C++ compiler.

- The graphical interface, which enables:
- Browsing and type hierarchy operations of

an ontology created by knowledge engineer;
- Creation, modification, inspection,

verification and errors pointing of CGs;
- Multiple-views of CG: linear form, graphic

form, CGIF, BCGCT (proper intern form),
CoGXML (a version of XML);

14

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

- Some CG operation.

. PRESENTATION OF THE SYSTEM

ogical
multimedia contents adapted to the end-user.

thoring system will consider
two knowledge types:

-
t must be

teach next in this chapter or lesson?)

-
 delivery (example before

rigorous definition?)

ypes. We
will use an ontology to describe (figure 1):

-
ween

concepts, like: prerequisite, hasPart, etc.).

- hrough pedagogical
presentation scenarios.

g. 1. The role of pedagogical module

4.1. Pedagogical ontology

_pedag.bcs) (as see in
following paragraph).

4);

;

 Capitol;

T;
 T;

ompusa <

 < UnitPedagCompusa;

};

4

We shall the present the way knowledge
representation is implemented and we offer a detailed
presentation of specifics concepts. Our work aims at
providing an environment (under development) of
authoring and presentation of pedag

Pedagogical knowledge requires an explicit
representation. Our au

pedagogical knowledge at macro-level, about
course organization (which concep

pedagogical knowledge at micro-level, about
concept presentation,

This paper concerns the second knowledge t

the domain model (all concept from the
knowledge domain and relationships bet

the delivery model t

Fi

The knowledge engineer (we) creates the ontology
(by programming in C++). The support (the file
obtained by executing the program
creare_ontologie.cpp) is saved in a file with .bcs
extension (ontologie

//file support ontologie_pedag.b
3;App:"cogitant 5.1.5"}

cs
{BCGCT:
Begin
 Support: (10,4,0,3
 TConSet:
 ConceptTypes:

 T;
 ResursaDidactica
 RolPedagogic;
 Locatie;

tr; UnitPedagDeIns
 Disciplina;

 Lectie;
 UnitConceptuala;

; UnitPedagCompusa
ptTypes; EndConce

 Order:
 ResursaDidactica <
 RolPedagogic <
 Locatie < T;
 T; UnitPedagDeInstr <

 UnitConceptuala <
UnitPedagDeInstr;
 UnitPedagC
UnitPedagDeInstr;
 Capitol < Disciplina; Lectie <

Pedagogical
vision of
curriculum

Conceptual
structure
Editor

(concepts+
relations)

Constraints
verification

Didactical
resources
Editor

Pedagogical
vision of
presentation

Domain
concepts

and
associated
didactical
resources

D
om

ai
n

co
nc

ep
tu

al

st
ru

ct
ur

e
D

id
ac

tic
al

re

so
ur

ce
s

Pe
rs

on
al

 c
ha

ra
ct

er
is

tic
s

(c
og

ni
tiv

e
st

yl
e,

St

ud
en

t d
om

ai
n

kn
ow

le
dg

e

Student
model

Authoring system

Pedagogical Unit

C
on

te
nt

 p
la

n
ge

ne
ra

tio
n Capitol;

 Disciplina
 EndOrder;

 EndTConSet;
 TRelSet:
 RelationTypes:

 localizata_in{Signature:2,
ResursaDidactica,Locatie};
 are_rol_pedag{Signature:2,
surs Re aDidactica,RolPedagogic};

 refera{Signature:2,
RolPedagogic,UnitConceptuala
 next{Signature:2,

Pr
es

en
ta

tio
n

sc
en

ar
io

 g
en

er
at

io
n

RolPedagogic,RolPedagogic};
nTypes; EndRelatio

 Order:
 EndOrder;
 EndTRelSet;
 TNesSet:
 NestingTypes:

ngTypes; EndNesti
 Order:
 EndOrder;

sSet; EndTNe
 Conf:
 Text, ResursaDidactica;

 Tabela, ResursaDidactica;
 Desen, ResursaDidactica;
 Imagine, ResursaDidactica;
 Sunet, ResursaDidactica;

STUDENT

15

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

 Film, ResursaDidactica;
 Simulare, ResursaDidactica;
 Introducere, RolPedagogic;
 Definitie, RolPedagogic;

 Reamintire, RolPedagogic;
 Concluzie, RolPedagogic;
 Demonstratie, RolPedagogic;
 Descriere, RolPedagogic;

; Diferentiere, RolPedagogic
 Evaluare, RolPedagogic;

 Identificare, RolPedagogic;
 Prezentare, RolPedagogic;
 Recapitulare, RolPedagogic;

ugal.ro/~diastef/

 can
create, modify and validate the CGs (figure 2).

in location (in Internet, Intranet or
local computer).

each didactical resource the pedagogical role and the
location (figure 2).

 Explicatie, RolPedagogic;
 Intrebare, RolPedagogic;

 Raspuns, RolPedagogic;
 c1, UnitConceptuala;

 c3, UnitConceptuala;
 c2, UnitConceptuala;

 "Programare in C", Disciplina;
 "Limbaje formale", Disciplina;

 "Date, operatori, expresii",
Capitol;
 "Implementarea structurilor de
crontrol", Capitol;
 "Pointeri", Capitol;
 "http\://lib.cs.ugal.ro/~diastef/
curs_an1/def_c1.txt", Locatie;
 "http\://lib.cs.
curs_an1/doc_c1.jpg",
Locatie;"http\://lib.cs.ugal.ro/~diaste
f/curs_an1/prezentare_c1.ppt",
Locatie;"http\://lib.cs.ugal.ro/~diaste
f/curs_an1/concl.doc", Locatie;
 "http\://lib.cs.ugal.ro/~diastef/

.doc", Locatie; curs_an1/rezumat
 EndConf;
 EndSupport;
End.

4.2. Pedagogical scenarios based CGs

After, the course author (any teacher) can use this
ontology to define the proper pedagogical vision (a
pedagogical scenario) about the course (content and
presentation). The course author can browse this
ontology using the graphical interface and

We have defined in our ontology the concept of
PedagogicalUnit, which means an instructional
(educational) unit. A pedagogical unit can have
different granularity levels: simple (denoted by
conceptual unit) or composite (a lesson, a chapter or
a discipline) (figure 3). The conceptual unit can have
many didactical resources (elementary document
fragments) associated; a didactical resource can play
a pedagogical role (introduction, definition, example,
conclusion, summary, etc.); a didactical recourse
have also a certa

Using the system, the teacher can associate for each
conceptual unit didactical resources, can specify for

Fig. 2. The graphical interface and the CG
graf_res.bcg

. 3. The entity-relation diagram

ig. 4. Pedagogical presentation scenario

ng by example, following by explanation, fig.
4, 5). The presentation scenario is also represented by
CG.

 CONCEPTUAL UNIT (elementary granularity)

Fig

F

Fig. 5. Pedagogical presentation scenario

The teacher can create (made by graphical interface)
many presentation scenarios for a conceptual unit,
adapted to the student motivation, student
knowledge, student learning style (a definition
followi

DIDACTICAL RESOURCE LOCATION

Pedag_Role:
Presentation

Pedag_Role:
Introduction

Pedag_Role:
usionsConcl

next

next

Pedag_Role:
Remember

Pedag_Role:
Introduction

alt

Pedag_Role:
Description

Pedag_Role:
Discrimination

Pedag_Role:
Evaluation

next

next

16

THE ANNALS OF ”DUNAREA DE JOS” UNIVERSITY OF GALATI
FASCICLE III, 2005 ISSN 1221-454X

Using the ontology created by the knowledge
engineer, the teacher can specify (made graphical
interface and CGs created or modified by
themselves):

- Which didactical resource will use for a certain
conceptual unit;

- Different association between didactical
resources and location;

- Different association between didactical
resources and pedagogical role;

- Can create different presentation scenarios.

All these are represented by CG and benefit of
automatic validation (made same interface).

The system process all knowledge specified by
teacher and generates dynamically virtual document
(a .html page), according with student profile and
knowledge.

5. CONCLUSIONS

Conceptual graphs (CG), with their formal structures
and operations, appear to be a suitable formalism for
constructing domain ontology and pedagogical
ontology and for reasoning.

A graph-based reasoning model provides two main
advantages:

- From a computational viewpoint, reasoning’s
benefit from combinatorial algorithms (from
graph theory) and is logically founded;

- From a modeling viewpoint, reasoning’s can be
visualized in a natural way and are simple to
understand for an end-user. This property is
particularly significant for knowledge
acquisition.

CoGITaNT tools provides a good start point for
developers in knowledge modeling and inference.

The proposed knowledge representation system can
produce the models used in a wide range of
hypermedia system. Because the dynamic generation
of presentation is a separated mechanism from
content construction, enhancing presentation reuse
and consistency, thus reducing the development cost.

6. REFERENCES

Chein, M. and M.L. Mugnier (1992). Conceptual
Graphs: fundamental notions, Revue
d'Intelligence Artificielle, pp.365-406, vol.6-4.

Mugnier, M.L. (1995). On generalization /
specialization for conceptuals graphs, Journal of
Experimental and Theoretical Artificial
Intelligence, vol. 7, pp. 325-344.

Mugnier, M.L. and M. Chein (1996). Représenter des
connaissances et raisonner avec des graphes,
Revue d'Intelligence Artificielle, vol.10-1, pp. 7-
56.

Sowa, J.F. (2000). Knowledge Representation:
Logical, Philosophical, and Computational
Foundations, Brooks/Cole Publishing Co.,
Pacific Grove, CA, ISBN 0-534-94965-7.

 Stefanescu, D., E. Pecheanu and S. Bumbaru (2001).
Using pedagogical agents in intelligent tutoring
systems, The 7-th International Symposium on
Automatic Control and Computer Science and
Parallel Workshop on Control Theory,
Modeling, Simulation and Systems' Identification
- Programme and abstracts, SACCS2001, Iasi,
CD+ISBN 973-8292-10-7, pp.100.

WWW (2005). http://cogitant.sourceforge.net
(accessed on-line)

17

http://cogitant.sourceforge.net/

	
	INTRODUCTION
	6. REFERENCES

