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Abstract: This paper focuses on the development of a feedback linearization control for 
a variable speed fixed pitch wind turbine driving a permanent magnet synchronous 
generator. The power system is considered to operate on an insular grid. The feedback 
linearization controller aims to maximize the energy captured from the wind, for 
varying wind speeds. Numerical simulation results are presented to demonstrate the 
effectiveness of the feedback linearization controller. 
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1. INTRODUCTION 

In the last years the use of wind power systems 
supplying with electricity isolated communities has 
known an important increase. A common 
configuration for such wind power systems uses a 
variable speed fixed pitch horizontal axis wind 
turbine (HAWT) driving a permanent magnet 
synchronous generator (PMSG) connected to the 
local grid through power electronics as shown in 
Figure 1. 

 

Fig.1. The HAWT – PMSG power system 

In such variable speed wind power systems the 
control problem consists mainly in maximizing the 
energy captured from the wind for varying wind 
speeds. 

Nonlinear control techniques (feedback linearization) 
have been used to design control structures for power 

systems using hidraulic turbines driving synchronous 
generators with excitation connected to the infinite 
bus. [Chapman, et al., 1993, Mielczarski, et al., 1994, 
Akhrif, et. al., 1999] but there are no literature 
references showing the use of feedback linearization 
technique to design a control system for HAWT – 
PMSG power systems connected either to the infinite 
or to an insulated grid. 

In this paper the feedback linearization technique is 
used to design a control structure for the highly 
nonlinear HAWT – PMSG power system connected 
to an insulated grid. 

The paper is organized as follows. The wind power 
system modeling is presented in next section. Section 
3 presents the design of the feedback linearization 
controller. The numerical simulation results that 
show the viability of the feedback linearization 
control design are presented in Section 5. Some 
concluding remarks end this paper. 

2. SYSTEM MODELING 

The kinetic energy of the moving air masses – wind – 
is captured by a turning device – turbine rotor – and 
transformed into mechanical energy – turbine shaft – 
and further into electrical energy – electrical 
generator. If the wind energy is fully captured by the 
turbine rotor, the total power would be 
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31
2tP aπ ρ= ⋅ ⋅ ⋅ ⋅v , where ρ  is the air density, a is 

the section area of the wind turbine and v is the wind 
speed. In reality the wind turbine harvest from the 
wind a mechanical power, , smaller than the total 
power, , due to the non-zero wind speed behind 
the rotor. The expressions of  is obtained 
according to Rankine – Froude theory of propellers 
in incompressible fluids, reconsidered by Betz in 
1926 [Burton, et al., 2001]: 

wP

tP

wP

(1) 31
2v pP a vρ= ⋅ ⋅ ⋅ ⋅C  

where pC  is the power coefficient defining the 
aerodynamic efficiency of the wind turbine rotor, and 
is a function of the tip speed ratio, λ . The tip speed 
is defined as the ratio between the peripheral speed of 
the blades and the wind speed:  

(2) R
v
Ωλ ⋅

=  

where  is the rotational speed of the blades (the 
rotational speed of the low-speed shaft) and R is the 
blade length. 

Ω

The typical performance curve for a horizontal axis 
wind turbine is given in Figure 2. 

 

Fig.2. Power coefficient versus tip speed 

It presents a maximum for a well-determined tip 
speed, denoted by optλ . 

The power characteristics for different wind speeds, 
are given in Figure 2. For every wind speed they 
have a maximum. All these maxima determine a so-
called Optimal Regimes Characteristic (ORC), as 
shown in Figure 3. 

In order to maximize the power extracted from the 
wind, the tip speed ratio should be kept around it’s 
optimal value. 
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Fig.3. The optimal regime characteristics 

2.1. Wind turbine model 

The wind turbine provides the shaft’s mechanical 
torque, according to the wind torque expression: 

(3) ( ) 3 21
2w TT C R vρ π λ= ⋅ ⋅ ⋅ ⋅  

where R is the blade radius and ( )TC λ  is the torque 
coefficient, defined as the fraction between the power 
coefficient and the tip speed: 

(4) ( ) ( )p
T

C
C

λ
λ

λ
=  
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The torque coefficient is an designed parameter and 
it is usually provided by the manufacturers of the 
wind turbine. For the wind turbine considered in this 
paper, the torque coefficient is modeled as a 6th order 
polynomial regression [Nichita, 1995]: 

(5) ( ) 2 3 4 5 6C a0 1 2 3 4 5 6T a a a a a aλ λ λ λ λ λ λ= + + + + + +  

The torque coefficient described by eq. (5) is 
presented in Figure 4. 
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Fig.4. The torque coefficient versus tip speed 

The operating point corresponding to optimal tip 
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speed (  lies on the descending portion of the 
torque coefficient, as it can be seen in Figure 4.  

)7optλ =

The gear box is considered to be rigid and without 
dynamic, with a gear ratio . 10i =

2.2. PMSG model 

The PMSG is modeled in the dq frame, discarding 
the zero component, and it is connected to the infinite 
power bus: 

(6) ( )

( )

d
dt

d
dt

d
dt

d
d d d q q

q
q q q d d m

w m q d q d

i
u Ri L pL i

i
u Ri L p L i

qJ T p i L L i i

ω

Φ ω

ω Φ

= − − +

= − − − −

⎡ ⎤= − − −⎣ ⎦

 

where  - the rotor resistance, p – the pole pair 
number, - the rotor inductances in the dq axes, 
J – the moment of inertia and  - the permanent 
magnet flux. The dq axes voltages,  and , are 
the input variables. 

R
,d qL L

mΦ

du qu

When connected to a local grid,  and  become 
output variables, so the PMSG should include the 
local grid equations. The voltages on the dq axes, 
described by the local grid equations, are: 

du qu

(7) d
dt

d d d
s s

q q q

u i i
R L X

u i i
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅ + ⋅ + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

d

q

i
i

 

where 

(8) 
1

1 d
0dt

s

s

o LTX T
L

ω
ω

−
− ⎡ ⎤

= ⋅ = ⎢ ⎥−⎣ ⎦
 

with sR  - the load resistance, sL  - the load 
inductance and T  - the Park transformation matrix 
[Leonhard, 1986]. 

We replace eq. (7) in eq. (6): 

(9) 

( ) ( ) ( )

( ) ( ) ( )

( )

d
dt

d
dt

d
dt

d
d s s d q s q

q
q s s q d s d m

w em w d q d q m q

i
L L R R i p L L i

i
L L R R i p L L i p

J T T T p L L i i i

ω

ω Φ ω

Ω Φ

+ = − + + +

+ = − + − + +

⎡ ⎤= − = − − −⎣ ⎦

 

The wind torque expression in eq. (5) provides the 
torque coefficient characteristic for all operating 
regimes. On the other hand, the controller aims to 
maximize the energy captured from wind, thus the 
region of interest is the descending pant of the torque 
coefficient characteristic (Figure 4), the region for tip 

speed 6λ ≥ . 
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Fig.5. The 2 torque coefficient characteristics 

In the feedback linearization controller design a 
second order polynomial regression was considered, 
as shown in Figure 5. 

The PMSG model, with the permanent magnets 
mounted on the rotor surface , can be 
expressed in the state variables form: 

( d qL L= )

(10) 
( ) ( )

( )

d
dt

x f x g x u

y h x

= + ⋅

=
 

or 

(11) 3

1 1 1 2 2 3

2 1 2 2 1 3 3 3
2 2

3 1 2 3 3 4 2

3 1

4 2

d
dt

0
s

x a x a x x
x b x b x x b x
x d v d vx d x d x

a x
b x R

⎡ ⎤+⎡ ⎤
⎢ ⎥⎢ ⎥ = + + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ + + +⎣ ⎦ ⎣ ⎦

⋅⎡ ⎤
⎢ ⎥+ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 

(12) 

1 2 3
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3
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0 1,c c  and are the parameters of the torque 
coefficient (given in Appendix). The dynamic of the 
power electronics – rectifier, chopper and inverter – 
being significantly more rapid than the wind turbine 
– PMSG dynamic, was neglected. Thus, the input 

2c
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variable sR  represents the equivalent load resistance 
at generator’s terminals. 

3. FEEDBACK LINEARIZATION CONTROLLER 
DESIGN 

We consider the nonlinear state variable wind power 
system model given in eq. (10): 

(13)  
( )

( )
( )
( )

[ ]

1 1 1 2 2 3

2 1 2 2 1 3 3 3
2 2

3 1 2 3 3 3 4

3 1 3 2 0 ;T

f x a x a x x
f x f x b x b x x b x

f x d v d vx d x d x

g a x b x

+⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = + +⎢ ⎥ ⎢
⎢ ⎥ ⎢ + + −⎣ ⎦⎣ ⎦

=

2

⎥
⎥

2

and: 

(14)  

( ) 3

;
T

d q

s

x i i

u R
h x x

ω

ω

⎡ ⎤= ⎣ ⎦
=

= =

In order to find the relative degree of the system, we 
compute the Lie derivatives [Isidori, 1989]: 

(15)  
( )
( )

2 2
1 2 3 3 3 4

4 3 2 0
f

g f

L h x d v d vx d x d x

L L h x d a x

= + + −

= − ≠

The relative degree of the system is  and is 
smaller than the system order. In this case, an exact 
feedback linearization is not possible [Isidori, 1989], 
but we can still achieve a partial feedback 
linearization, resulting in the decomposition of the 
wind power system into a second order linear 
subsystem, responsible for the input – output 
behavior, and a fist order nonlinear subsystem, 
representing an internal dynamic that does not affect 
the input – output behavior. 

2r =

We introduce the change of coordinates: 

(16) 
( )

( )
1 3

2 2
2 1 2 3 3 3

1
3 3

2

f

z h x x

z L h x d v d vx d x d x

xz a
x

= =

= = + + −

=

4 2

)

 

In the new coordinates, the system dynamics are: 

(17) ( ) ( ) (
( )

1 2

2 1 2 1 2 3 1 2 1 4 2 3 1 3

2
3 2 1 1 3 1 3 3 3 1 3

2 2 s

z z
z dv d z v d v d z z b b R bazz A
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=
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with 

(18) 2 2
1 2 1 3 1 2A d v d vz d z z= + + −  

The control input will be: 

(19) 
( ) ( )( )21

f
g f

u L h
L L h x

x v= − +   

with 

(20) 
( ) ( ) ( ) ( )
( )

2
4 2 2 3 3 3

4 3 2

2f

g f

L h x d f x d v d x f x

L L h x d a x

= − ⋅ + + ⋅

= −
 

where ( )2f x  and ( )3f x  are given in eq. (13). 

The command is composed by a state variable 
feedback linearization, given by the Lie derivatives 

( )2
fL h x  and ( )g fL L h x , and a control input v which 

allows us to impose the desired dynamic to the input 
– output linear subsystem. 

The control input v is a state variable feedback 
command [Ceanga, et al., 2001] with an integrator to 
assure zero error in stationary regime. The state 
variable feedback command scheme is presented in 
Figure 6.  

z Az Bu= +& y Cz=1
s

refy ε& ε v z y

−−
++

 

Fig.6. State variable feedback command scheme 

The input – output linear subsystem is: 

(21) 
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The command is: 

(22) [ ] 1
1 2

2
I

z
u k k k

z
ε

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
 

where 

(23)  [ ] 1

2

1 0ref ref z
y y y

z
ε

⎡ ⎤
= − = − ⎢ ⎥

⎣ ⎦

is the reference tracking error. 

The parameters and 1 2,k k Ik were calculated by pole 
allocation technique [Åström, 1990] imposing a pair 
of dominant poles with 0 20ω =  and 0.9ζ = : 

(24) 1 24000; 136; 40000Ik k k= = =  
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4. SIMULATION RESULTS 

The feedback linearization control scheme for wind 
power systems was implemented and numerically 
simulated in Matlab/SIMULINK® (Figure 7). 

wv

+ −

optref
wv

R
λ

Ω =

, ,d qi i Ω

)

 

Fig.7. Feedback linearization control block scheme 

 

The aim of the feedback linearization control is to 
maximize the energy captured from wind, namely 
maintaining the tip speed around its optimal value 

. The speed reference  is calculated 

according to the measured wind speed : 
( 7optλ = refΩ

wv

(25) optref
wv

R
λ

Ω =  

where R is the blade radius. 

In order to validate the feedback linearization speed 
tracking controller, numerical simulations with a 
determinist probe signal were conducted. The results 
are presented in Figure 8, where the reference speed 
is the dotted line and the shaft speed is the solid line. 
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Fig.8. Shaft speed versus reference speed 

The feedback linearization control scheme has good 
tracking capabilities and assures zero tracking error 
in stationary regime. 

The signal presented in Figure 9 represents a realistic 
wind profile, modeled as a non-stationary stochastic 
process [Cutululis, et al., 2001] and used as the input 
to the simulation. 
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Fig.9. The wind profile 

 

The wind profile covers a speed range between 
4 11m/s÷ , which represents the range between wind 
turbine starting speed and nominal speed. This is the 
speed range that covers most of the wind turbine’s 
operating time.  

The effectiveness of the feedback linearization 
control scheme can be seen in Figure 10. The 
controller ensures maximum energy caption from 
wind, for wind speed varying from 4 to 11 m/s. The 
tip speed is maintained around its optimal value 
( )7optλ =  with dynamical errors due to the 
turbulence component of wind speed of maximum 

1± . 
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Fig.10. Tip speed evolution 

Figure 11 shows the dynamic evolution of the 
operating point around the ORC. The feedback 
linearization controller maintains the operating point 
around the ORC for wind speeds varying from 4 to 
11 m/s.   
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presented in this paper. The wind power system uses 
a variable speed fixed pitch horizontal axis wind 
turbine with a permanent magnet synchronous 
generator connected to a local grid. A state variable 
model represented the whole system, with input 
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 With a state variable transformation, the system is 

decomposed into a second order linear subsystem, 
responsible for the input – output behavior, and a 
first order nonlinear subsystem representing the 
internal dynamic that does not affect the input – 
output behavior. The command is synthesized as a 
state variable feedback linearization and a control 
input that imposes the dynamic of the linear 
subsystem. Numerical simulations conducted in 
Matlab/SIMULINK® show the effectiveness of the 
feedback linearization scheme.  

7. APPENDIX 

PMSG parameters: 
 

3,3ΩR = ; 
41.56 3Hd qL L e= = − ; 

20.042 kgmJ = ; 
0.4382 WbmΦ = ; 

3p = ; 
 6. REFERENCES Wind turbine parameters: 
 Akhrif, O., Okou, F.A., Dessaint, L.A., Champagne, 

R., (1999). Application of a Multivariable 
Feedback Linearization Scheme for Rotor Angle 
Stability and Voltage Regulation of Power 
Systems. IEEE Trans. on Power Systems, Vol. 
14, No. 2, pp. 620 – 628. 

31.25kg/mρ = ; 
2.5mtR = ; 

20.005kgmTJ =  

0 1 20.1253; 0.0047; 0.0005;c c c= = − = −
Åström, K.J., Wittenmark, B., Computer Controlled 

Systems - Theory and Design, second edition, 
Prentice-Hall, Englewood Cliffs NJ, 1990. 
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