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Abstract: Cellular neural networks (CNNs) are recurrent artificial neural networks. Due 
to their cyclic connections and to the neurons’ nonlinear activation functions, recurrent 
neural networks are nonlinear dynamic systems, which display stable and unstable fixed 
points, limit cycles and chaotic behavior. Since the field of neural networks is still a 
young one, improving the stability conditions for such systems is an obvious and quasi-
permanent task. This paper focuses on CNNs affected by time delays. We are interested 
to obtain sufficient conditions for the asymptotical stability of a cellular neural network 
with time delay feedback and zero control templates. For this purpose we shall use a 
method suggested by Malkin (1952), where the “exact” Liapunov-Krasovskii functional 
will be constructed according the procedure proposed by Kharitonov (2001) for stability 
analysis of uncertain linear time delay systems. 
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1. INTRODUCTION 
 

Cellular neural networks (CNNs), introduced in 1988 
(Chua and Yang, 1988), are artificial recurrent neural 
networks displaying a multidimensional array of cells 
and local interconnections among the cells. CNNs 
have been successfully applied to signal and image 
processing, shape extraction and edge detection. In 
such applications stability and other problems of 
dynamical behaviour of the CNN are equally 
important. These properties are necessary for the 
network to achieve its goal and have to be checked 
on the mathematical model.  
 
In the last ten years the research was oriented 
towards the dynamics of the networks affected by 
time delays due to the signal propagation at the 
synapses level of the biologic brain or the reacting 
lag in the case of the artificial neural network. These 
lags may introduce oscillations or may lead to 
instability of the network. We are interested to obtain 

sufficient conditions for the asymptotical stability of 
a cellular neural network with time delay feedback 
and zero control templates. For this purpose we shall 
use a method suggested by Malkin (Malkin, 1952; 
see also Barbashin, 1970), where the “exact” 
Liapunov-Krasovskii functional will be constructed 
according the procedure proposed by Kharitonov 
(2001) for stability analysis of uncertain linear time 
delay systems. These conditions are independent of 
the delay parameter.  
 

2. THE MATHEMATICAL MODEL AND 
PROBLEM STATEMENT 

 
Consider a cellular neural network with time delay 
feedback and zero control templates 

 
(1)   ( )∑
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where j is the index for the cells of the nearest 
neighborhood N of the ith cell, ai is a positive 
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parameter, cij are synaptic weights (which can have 
an inhibitory effect if cij < 0, or an excitatory one if cij 
> 0), Ii is the bias and τj are positive delays.  
 
The nonlinearities for the cellular neural networks are 
of the bipolar ramp type:  
 

(2)   ( )11)( 2
1 −−+= iiii zzzg  

 
what means they are bounded, monotonically 
increasing and globally Lipschitzian functions, with 
the Lipschitz constant Li = 1. 
 
Without loss of the generality, using a change of the 
coordinates, , one can shift the 
equilibrium point z

*
iii zzx −=

* to the origin so that system (1) 
can be written into the form: 
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Using a method proposed by Malkin (1952), we 
assume that there exists ki > 0 such that the 
nonlinearities satisfy  
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and that for fi(xi) = kixi  the system 
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is exponentially stable. We underline that (5) is a 
normal condition taking into account the properties 
of the activation functions of CNNs neurons. 
 
Denoting 
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system (5) may be written into the form 
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with the initial condition  for  ),()( θϕθ =ix
]0,[ τθ −∈ , where  , ϕ ∈C ([-τ, 0], Rj

j
ττ max= n). 

Consider now the perturbed system: 
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which can be written as 
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with  
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i

i
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We are interested to find conditions so that the 
perturbed system (11) remains exponentially stable 
for all ( ) nikkb iii ,1,, =∀−∈ . In fact, ( )ii kk ,−  
represents the proper interval for the nonlinear 
functions fi attached to each cell of the network. In 
this way we will find sufficient conditions for the 
exponentially stability of the nonlinear system (3). 
 

3. MAIN RESULT 
 
Given positive definite n x n matrices P0, Pj, Rj, 

nj ,1=  let us define on C ([-τ, 0], Rn) the positive 
definite functional 
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Since system (9) is exponentially stable, there exists 
a Liapunov-Krasovskii functional V(φ(⋅)) so that 
along the solutions of (9) we have the equality 
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The “exact” Liapunov-Krasovskii functional is of the 
form  
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where, since the system (9) is exponentially stable, 
the matrix valued function  
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is well defined for allτ ∈ R; here K(t) is the 
fundamental matrix associated to the system (9) (see 
Kharitonov, 2001). 
 
Following the steps in (Kharitonov, 2001) the time 
derivative of Liapunov-Krasovskii functional along 
the solutions of the perturbed system (11) is 
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We assume that bi, ni ,1=  are so that the matrices ∆j, 
defined by (12), are constant and satisfy the condition 
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T
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where Hj are definite positive matrices, ρj are given 
positive numbers and I is the identity matrix. 
 
For the derivative of the functional (15) along the 
trajectories of the perturbed system (11) one obtains 
the following upper bound: 
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where is assumed that njHH jj ,0,1: ==
µ

. 

From the above inequality one derives the following 
theorem: 
 
Theorem: Let system (5) be exponentially stable. 
Then system (3) is exponentially stable for all 
nonlinearities of the form , 

with 

( iiiiii xxbkxf )()( += )
( ) nikkxb iiii ,1,,)( =∀−∈  defined by (12), if 

there exist definite positive matrices P0, Pj, Rj, 
nj ,1=  and a positive value µ, such that 
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Here bi is a nonlinear function whose form is derived 
from (4): 
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The Malkin’s method idea is: if the Liapunov 
function(al) and its derivative - both being quadratic 
forms - have good sign properties for all 

( )iii kkb ,−∈ , then for any fixed  one can 

obtain b

0≠ix

i from (20) and for ( )iiii kkxb ,)( −∈  the 
properties of the Liapunov function(al) do not 
change. 
 
Remark:  If the theorem conditions are satisfied, then 
terms bi may be even time varying within the interval 
( )ii kk ,− , if they are integrable functions of t. 

 
Indeed, for some constants ε > 0 and γ > 0 the 
functional V(ϕ) verifies the inequalities 
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The strictly positive lower bound of V (with ε  > 0) is 
not valid in general since V(ϕ) is a positive definite 
quadratic functional on an infinite dimensional space 
and the spectrum of a positive operator does not meet 
in general the compacity assumption. In our case, 
however taking into account (15), the well 
delimitation of V from 0 i.e. ε  > 0 is secured. 
 
Along the solutions of the perturbed system (11) the 
derivative of the functional is 
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