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Abstract: This paper introduces a synthesis methodology for active elements within 
systems that uses frequency response function as a basis for describing required 
behavior. The method is applicable in the design of a new system or in the retrofit of an 
existing system in which an active element is required or desired. The two basis 
principles of bond graph modeling are the “reticulation principle” which decomposes a 
physical into elemental physical laws represented as network elements interacting 
through ports and the “power postulate” which assembles the complete model through a 
network of power flows representing the exchange of energy between the elements. 
Moreover the bond graph model leads to a rigorous definitions of the structure of the 
associated dynamical equations. 
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1. INTRODUCTION 
 

It is possible to concentrate and to separate certain 
properties of on object and to describe this object as 
system of interrelated properties or interconnected 
elements. The outcome of this approaches called the 
bond graph. From a mathematical point of view a 
bond graph is defined as an oriented graph with a 
special connection topology, whose edges and 
vertices have special meanings. 
 

 
Bond graph are a powerful tools for modeling 
physical systems in because they facilitate the 
modeling of systems involve multiple energy 
domains. Systems state equations contain variables 
from multiple energy domains that can be extracted 
from a specific bond graph. We obtained set of 
structural dynamic equations with respect to the 
nonlinear model and its linearization is discussed. 
Finally a bond graph for a element active is obtained. 

2. BASIC CONCEPT FROM BOND GRAPH 
THEORY 

A bond graph is a directed graph  without isolated 
vertices whose underlying undirected graph is 
simple. This means that its underlying undirected 
graph does not contain parallel edges and loops. The 
edges of the bond graph are called bonds and its 
vertices are called multi – port elements. 

→

G

Every edge b of a bond graph  is labeled by a pair 
of two signals: flow signal, f, and effort signal, e, that 
is  

→

G

  b =  (f, e) 

 
The signals f, e are defined on a set T, called time 
axis, which is an interval of R. The value of  f, e at 
any instant of time t belong to two real vector spaces: 
F – flow spaces and E – effort spaces, respectively. 
Elements of the space F are called flows, f, and 
elements of the space E are called efforts, e.  
 
Consequently b(t) belongs to B: F x E for any t∈T, 
and B is called the bond space. 
 
In the usual formulation of a bond graph the spaces F 
and E are assumed to be power conjugate. This 
means that there exists a pairing 
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< . | . > E x F → R 

 
called power product satisfying the following three 
properties: 

1. It is a linear function of each coordinate, 
that is 

2.  
><+><>=+< f|eβf|eαf |βeαe 2121

><+><>=+< 2121 f|eβf|α|βeαf|e e
Rβ α, E;e ,e e,   F;f ,f f, 2121 ∈∀∈∀∈∀  

 
3. It is non – degenerate, that is 
 

0    f E    e  0; f  |  e =⇒∈∀=><  
0    e  F    f  0; f  |  e =⇒∈∀=><  

 
4. The expression <e | f > has the physical 

dimension of power. 
 

Note: Flow f and effort e correspond to some 
physical quantities (e.g. current and voltage; velocity 
and force; entropy flow and temperature, and so on). 
By inserting their physical dimensions into < f | e> 
we obtain the dimension of power. 
The direction of a bond determines the positive flow 
of power exchanges between the vertices incident on 

the bond. The direction of a bond b ∈ 
→

B  with 
respect to a multi – port element M ∈M (That is a 
vertex) is defined by the map 

{ }1 1,xMB:σ −→
→

 
 

as follows 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧

b of head   theis  M if  1,-
b  of    tail  theis  M if    1,

:Mb,σ  

 
The net power of the multi – port element M at any 
time instant t is defined by 
 

( ) ( ) ( ) ( )
IB

k

1i
iii

M
net tf  |  teM ,bσtP ><= ∑

=

 

 
Here, <.  | .> is the power product associated to the 
bond bi. 
Definition: A bond graph is a labeled direct graph 

without isolated vertices whose 

underlying undirected graph is simple and where to 

every edge b∈ there is associated a pair (f, e) ∈F x 
E with F, E power conjugate real vector spaces, and 
where to every vertex M ∈ M there is associated a 

behavior in the flow and effort signals of the edges 
incident to M. 

⎟
⎠
⎞

⎜
⎝
⎛=

→→

BM,G

→

B

Remark: If the spaces F and E are not power 

conjugate then the directed graph  is called a 
pseudo – bond graph. Nevertheless all mathematical 
results developed in this paper also apply to pseudo – 
bond graph. On the other hand, in this case the net 
power of a vertex can not be always meaningfully 
defined. 

→

G

 
Definition: A bond graph is standard if it is canonical 
and the vertices which do not belong to the junction 
structure are: C – elements, I –elements, R – 
elements, SE – elements, or SF – elements.  
 
Definition: A bond graph is a scalar bond graph if 
the following two conditions are satisfied: 
1. The bond space of every edge is R x R; 
2. The ports of all multi – port elements except the 0 
– junction, 1 – junctions, TF – elements and GY – 
elements, have independent causality. 
 
Definition: Consider a scalar bond graph. The 
subgraph of scalar bond graph obtained by deleting 
all multi-port elements which are not ideal junctions, 
TF – elements and GY –elements is called the 
junction structure. 
 
Definition: A scalar bond graph is canonical if the 
following conditions are satisfied: 
1. At last one end vertex of every bond is an ideal 
junction; 
2. If both end vertices of a bond are ideal junctions 
then on of them is a 1 – junction and the other ia a 0 
– junction; 
3. Any ideal junction is adjacent to one and only one 
multi – port element which does not belong to the 
junctions structure; 
4. If and end vertex of a bond is a multi – port 
element that does not belong to the junction structure 
then the bond is incoming with respect to the multi – 
port element; 
5. Every TF – element is adjacent to a 1 – junction 
and to a 0 – junction; 
6. Every GY – element is adjacent to either two 1 – 
junctions or two 0 – junctions; 
7. The number of different paths of length one and 
two between any two ideal junctions of the 
underlaying   undirected graph of the bond graph is 
less than or equal one. 
 
Definition: If a scalar bond graph is canonical then 
its junction structure is called a canonical junction 
structure. 
The collection of all bonds incident to Z – elements 
is denoted by bz where  
 
  Z∈{ SE, SF, C, R, I} 
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The bond bz is the pair of signals fz and ez. 
 

3. IMPORTANCE OF ACTIVE ELEMENT 
SYNTHESIS 

 
This methodology aids in the determination of 
control schemes that are necessary to control the 
active element, such that required frequency 
domain behavior are met. 
While other impedance – based method, such as 
electric circuit equivalent models, could be used 
to model system behavior, bond graph were 
selected as the modeling method to be used in 
this work for a number of reasons: 
1. The bond graph methodology yields a clear 

mapping of the topology of a system; 
2. It easily lends it self to impedance – based 

modeling; 
3. There exists a straightforward method by 

which state equations can be extracted from 
the bond graph; 

4. It allows for causality information to be 
contained in the system model; 

5. It easily handles the modeling of systems 
that involve multiple energy domains, and it 
easily allows for the modeling of system 
elements that exhibit nonlinear behavior. 

 
 

4.  CASE – STUDY - PIPELINE MODELS [2] 
 
4.1 Non-linear pipeline model with distributed 
parameters.  
 
The non – linear pipeline model with distributed 
parameters is obtained by using the equations for 
continuity, momentum and energy. These equations 
correspond to the physical principles of mass 
conservation, Newton’s second law and energy 
conservation. Applying these equation leads under 
the assumptions that the fluid is compressible, 
viscous, isentropic, homogenous and one – 
dimensional to the following coupled non –linear set 
of partial differential equations: 
 

(1)   
x
q

t
p

a
A

2 ∂
∂

−=
∂
∂

 

 

(2)   ( )
x
pq

ρ2DA

qλg.sinαρ
t
q

A
1 2

2 ∂
∂

−=++
∂
∂

−−

−−
 

 
where p is the pressure, q is the flow, A the cross- 

section of the pipeline, a the velocity of sound,  the 
constant density of the homogenous fluid, α the 
pipeline inclination, λ the dimensionless friction 
coefficient and D the diameter of the pipeline. 

−−

ρ

The continuity and momentum equations 1 and 2 
form a pair of quasilinear hyperbolic partial 

differential equations in term of two dependent 
variables, mass flow rate q(x, t) and pressure p(x, t), 
and two independent variables, distance along the 
pipeline x and time t. A general solution is not 
available, however, a transformation into four 
ordinary differential equations grouped to two pairs 
of equations by the characteristics method is 
possible. 
 
4.2 Linear pipeline model with distributed 
parameters.  
 
Nonlinear equations(1, 2) are linearised and written 
in a form using notations common in the analysis of 
electrical transmission lines. Also, the gravity effect 
can be included into the working point so       α = 0 is 
supposed. The corresponding system of linear partial 
differential equations is 
 

(3)   
x
pRq

t
qL

∂
∂

−=+
∂
∂

 

 

(4)   
x
q

t
pC

∂
∂

−=
∂
∂

 

 

where L =1/A, R = 
DρA

qqλ

2

--

−−

−−

⎟
⎠
⎞

⎜
⎝
⎛

 (  is the flow at the 

working point) and C= A/a

−−

q

2    are the inertance 
(inductivity), resistance and capacitance per unit 
length, respectively. We perform a complex – plan 
curve – fitting procedure in order to obtain the 
corresponding transfer function in analytical form, 
namely as a ratio of two polynomials. The results of 
the curve fitting rocedure yields what we will refer to 
in this case as the “data –based” transfer function, 
dTF(s). Introducing the characteristic impedance 

Cs
RLsZK

+
=    and    n = R).Cs(Ls +     the 

linearised model of the pipeline can be written in one 
of the following two causal forms which differ from 
each other with respect to the model inputs 
(independent quantities) and outputs (dependent 
quantities) and where P and Q are the double Laplace 
transformations of the pressure p and flow q 
respectively and indexes 0 and L denote the inlet and 
the outlet of the pipeline respectively. 
 

1. Inputs Q0, PL, outputs QL, P0: 
 

1.1. Transfer function model 
 
The derivation of a transfer function model for 
PDEs follows the same steps as for the scalar 
case. 
1. Apply the Laplace transformation with 

respect to time. This removes the time 
derivatives and turns the initial – boundary – 
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value problem into a boundary value 
problem for the space variable. 

2. Construct a suitable transformation for the 
space variable which removes the spatial 
derivatives and turns the boundary value 
problem into an algebraic equation. 

3. To obtain a multidimensional function, 
solve the algebraic equation for the transfer 
of the solution of the PDE 

We obtain: 
 
(5)   

( ) ( ) Lp
K

0
p

L PnLtanh
Z
1Q

nLcosh
1Q −=  

 

(6)   ( ) ( ) L
p

0pK0 P
nLcosh

1QnLtanhZP +=  

 
Block diagram is shown in Figure 1. 
 

 
    

Fig. 1. Block diagram 
 
 
2. Inputs QL, P0, outputs Q0, PL: 
 

The transfer functions are determined from following 
equations: 

 

(7)    ( ) ( ) 0p
K

L
p

0 PnLtanh
Z
1Q

nLcosh
1Q −=  

 

(8)   ( ) ( ) 0
p

LpKL P
nLcosh

1QnLtanhZP +−=  

 
The block diagram is shown in Figure 2. 
 

                     
    

Figure 2. Block diagram 
 

4.3 Linear pipeline model with lumped parameters.  
 
The pipeline as a lumped parameter system can be 
presented as a second order transfer function in the 
form: 

(9)   ( ) dsT
e

1s1a2s2a
0bs1b2s2b

sG
−

++

++
=  

 
where Td is the dead time. The transcendent transfer 
functions are approximated by a rational transfer 
function with dead time however only for a class of 
well damped pipelines.  
 

5. THE TEST OF A NEW CONTOLLER IN A 
CONTROL LOOP WITH A SOFTWARE MODEL 

 
We consider the closed loop system shown in figure 
3.  
  

 
  
Fig. 3. The closed loop system 

 
The transfer function of the closed loop system is: 
 

(10)   ( ) ( ) ( )
( ) ( )sHsZ1

sHsZsH
f

f
0 +

=  

 
The transfer function of the controller is: 
 

(11)   ( ) ( )
( ) ( )sH

1.
sH1

sHsZ
f0

0

−
=  

 
4.3.1. Pressure → pressure and flow → flow transfer 
function  

 
(12)   H11(s) = 

( )pnLcosh
1                          

 

         
 
Figure 4. Nyquist plots- Curve fit of “experimental” 

frequency response data: 
         ___   nonparametric model; 

   - - -   parametric model. 
 

Given that we have experimental data, we use the 
following transfer function 
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(13)   

1.3355.6s25.6s25.72s2.037ss
6556907.6s121.3s0.7591s3.702ss(s)H 2345

2345

f +++++
−++−−

=  

 
As accurate as possible curve fit is desired, however 
the designer must exercise caution, since selecting 
too high a degree of polynomials can cause the curve 
fitting algorithm to yield unstable transfer functions. 
An illustration of the curve fit to the “experimental 
data” is shown in Figure 3, where original data points 
are represented by solid line and the curve fit is 
represented by dashed line 
 
Step responses for system consist in pipeline model 
and system desired are shown in Figure 5. 
 
 

         
 
Fig. 5. Step response 
 
Following the procedure, we can determine the 
impedance of the unknown filter by equating the 
desired transfer function with theoretical transfer 
function and solving for Z(s), as shown below.  
 
The bond graph structure that represents the synthesis 
system impedance is shown in  Figure 6. Note the 
representation of the negative bond graph elements. 
 

(14)   1124.5207s62.2038s11.4887s1.1447s
0.776422.4s1.073ssZ(s) 234

23

+−+−
+++

=
 

 
 

(15)   ( )

11.11409.1s
11.43570.3403s

10.32490.1362s

1
3.4233s

1.60391sZ

−
+−

+−

+
−

+=  

 
Application of the impedance decomposition 
procedure expression, whose terms consist of basic 
impedance only. 
 
Note that some of the impedance terms are not 
positive real, thus indicating the need for an active 
element.  

 

 
 
Fig. 6. Bond graph representation 
 
A signal flow diagram was also developed, which 
provided information about the nature of the control 
system needed such that the system exhibited the 
desired frequency response behavior. 

4.3.2. Pressure → flow transfer function 
 

(16)   H12(s) =  1/ZK. tanh (nLp) 
 

 
 

Figure 7. Nyquist plots: 
 ___   nonparametric model; 

                      - - -   parametric model 
 

(17)   ( )
115.74s9.37s7.09s1.08s

0.80.63s17.3s3.217s1.87s0.075s-sH 234

2345

f ++++
−−−−−

=  

 
(18)   ( )

0.36035.5243ss
9.70161.3764sssH 2

2

0 ++
++

=  

 
(19) ( )

1.11460.7052s23.4225ss
2.56961.0405sssZ 23

2

+++
++

=  
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Fig. 8. Bond graph representation 
 
4.3.3.Flow → pressure transfer function  
 

(20)   H21(s) =ZK. tanh (nLp) 
 

 
           
Fig. 9. Nyquist plots: 

 ___   nonparametric model; 
                      - - -   parametric model 
 

(21)  ( )
1226s98.47s103.7s6.593s3.935s

1.247226.6s249.5s
48.58s26.88s0.65s0.37s

sH 2345

2

3456

f +++++
++

++++

=  

 
(22)   ( )

0.01643.47s2.0062ss
0.9905ssH 230 +++

+
=  

 
(23)   ( )

602.458.5s70.48s0.7283ss
0.128623.21s0.6747sssZ 234

23

++++
+++

=       
 

 
 

Fig. 10. Bond graph representation 

 
Where: 

C1 = 1; R1 = 1/0.0536; C2 = 0.0212;  
R2 = - 0.0113; C3 = 1/4.2518; 
R3 = -1/0.0113; I4 = 0.019; R4 = 0.0119 

      
 

6. ACTIVE ELEMENT SYNTHESIS PROCEDURE 
 

1. Obtain desired transfer function 
- given in analytical form or 
- determine from curve fit of experimental 

data. 
2. Determine theoretical transfer function, use 

impedance – based bond graph. 
3. Solve for unknown impedance, Z(s).       
4. Decompose Z(s) into basic impedances – 

polynomial division and partial fraction 
expansion. 

5. Cast into bond graph framework – using 
positive and negative basic impedances 

6. Incorporate into system bond graph model – 
replace Z(s). 

7. Determine state equations from bond graph 
model – identify virtual state variables. 

8. Identify separable bond graph elements – 
select hybrid or fully active system 

9. Select active devices physical realization – 
add idealized bond graph representation to 
model  

10. Determine control signal diagram – 
graphical representation of the differential 
equations of virtual state variable 

11. Perform simulations – obtain force – 
velocity profile and controlled source 
history 

 
Add real (parasitic) actuator effects – repeat synthesis 
process. 
 
Returning our attention to the nature of each 
impedance term in Equation (15), we see that the first 
impedance term is basic, which means that its 
impedance corresponds to a primitive bond graph 
elements, namely a resistive element. It is also 
positive definite, thus it is physically realizable 
element. The second term is composite, which means 
that its impedance does not correspond to a primitive 
bond graph element and must be further decomposed. 
It is also not positive definite, thus its resulting terms 
will not correspond to physically realizable elements. 
The third terms is composite, however no conclusion 
can be made about positive definiteness of its 
resulting terms until a further decomposition is 
carried out. The two composite impedance terms 
cannot be broken down any further. However, we can 
invert them to form admittances.  
There is a distinction between the term active 
element, which refers to the model representation 
(including negative bond graph elements etc.), and 
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the term actuator, which refer to the actual physical 
realization of the active element 
 
As a subset of these elements, the bond graph 
element with negative impedances are enclosure in a 
rectangle. Recall that, at this stage, the portion of the 
bond graph that represents the synthesized active 
element is strictly a representation of the behavior of 
the active element, and no topological or physical 
representation is yet implied.  
 
The next task is to analyze a physical representation 
for the negative bond graph elements that are 
associated with the virtual state variables. 

 
Using bond graph impedance methods, we form a 
symbolic expression for this transfer function. For 
this transfer function we need only to examine the 
bond graph  

 
7. CONCLUSIONS 

 
This paper demonstrated the use of the active 
element synthesis method in determining the design 
parameters of an active device. 
 
The active element impedance was determining using 
impedance – based bond graph techniques and the 
desired frequency response function. The impedance 
was then decomposed into basic impedance terms in 
order to develop a bond graph model of the active 
element behavior. Preliminary simulation using this 
model showed that the synthesized active element 
met the desired frequency response behavior. 
 
Its impedance – based approach is well suited to 
systems whose required behavior is expressed in 
terms of frequency response. Combined with the use 
of bond graph, this methodology easily allows for 
simulations to be run for various active device 
physical realizations and design parameters, such that 
active device operating regimes are obtained.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results of these simulations allow a system 
designer to perform comparisons and make decisions 
regarding the preliminary design of an active device 
and its control system. 
 
As an example, the active element chosen was a 
pipeline. After identifying the separable bond graph 
elements of the system, a bond graph model of the 
pipeline with a controlled was developed. A signal 
flow diagram was also developed, which provided 
information about the nature of the control system 
needed such that the system exhibited the desired 
frequency response behavior. This demonstrated the 
utility the synthesis method within a simulation – 
based design environment. 
 
The second objective is to provide a validation of the 
methodology. Based strictly on the experimental 
data, we wish to determine if the synthesis method 
yields an active element whose behavior matches that 
of the existing active element in the system. 
 
Thus, it can be concluded that the bond graph model 
of the reticulated filter produces the desired response 
characteristics. 
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