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Abstract: This paper presents an optimal control structure for variable speed, fixed pitch 
wind turbine. The control objective results from the optimization criterion that includes 
two contradictory demands: maximization of the energy captured from the wind and 
minimization of the damage caused by mechanical fatigue. We admit, as a modeling 
assumption, that wind speed has two components: a slowly varying component, named 
seasonal and a rapidly varying component, named turbulence. Hence, two control 
structures, which should function simultaneously, are identified in the optimal control 
problem. 
The first optimization structure aims to maximize the wind turbine energetic efficiency 
by maintaining operational point on optimal regime characteristics (ORC). According to 
the slowly varying seasonal component of wind speed, a control loop adjusts system 
operating point in order to maintain it on ORC. In the second optimization structure, the 
system is considered to be operating on “static” optimal point assured by the above 
mentioned control loop, with the turbulence component being the input variable. The 
second control loop aims dynamic optimization that implies the minimization of the tip 
speed ratio variations around its optimal value, while minimizing the torque variations, 
thus the mechanical stress. Mathematically, this objective is defined as an integral 
criterion, belonging to linear quadratic optimization. 

Keywords: wind power, variable speed operation, wind modelling, linear quadratic 
optimal control. 

1. INTRODUCTION 

The performances of the wind energy conversion 
systems decisively depend on the correct statement 
and the efficient solving of the associated control 
problem. The maximization of the energy conversion 
– in the sense of maximizing the power coefficient, 
Cp – has been the most used control goal for long 
time. Because the optimal value of this coefficient is 
obtained for a well-determined tip speed ratio, λopt, 
the optimal control was usually implemented by 
tracking the desired value of the shaft speed, 

R
v optref λ⋅

=Ω . Recently, not only the energetic 

aspect is considered in defining the performance 
criterion, but also that of reliability. In order to 
reduce the mechanical fatigue of the drive train, it is 

imposed the minimization of the torque variations, by 
controlling the generator torque variations, ∆Γ(t). In 
(Ekelund, 1997), the antagonist demands of 
maximizing the energy conversion and minimizing 
the torque variations are expressed by a combined 
optimization criterion: 

(1) { }2 2
optJ E ( t ) ( t )α λ λ ∆Γ⎡ ⎤= ⋅ − +⎣ ⎦  

where E{⋅} is the statistical average symbol. If only 
the first component from (1) is minimized, the 
functioning around the optimal regime is ensured, but 
with the price of some important torque variations. 
The trade-off between these two requirements can be 
adjusted by the ponderation coefficient α. 

The Gaussian linear quadratic problem was solved by 
using an adaptive control structure (Ekelund 1997), 
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as the dynamical system’s parameters depend on the 
operating point chosen on the turbine’s characteristic, 
and this latter depends on the average wind speed. 

In this paper, a new optimal control structure is 
proposed, which optimizes the combined integral 
criterion without using adaptive structures. The basic 
principle used relies upon separating the turbulence 
and the seasonal (low frequency) wind speed 
components (Nichita, et al, 2001). The two 
components act separately within two loops of the 
proposed control structure. Thus, the low frequency 
component generates the input of the shaft speed 
control loop, ensuring to reach the “static” optimal 
operating point on the Cp(λ) characteristic. The 
turbulence component acts within an optimal control 
loop, having as performance criterion the one given 
in relation (1), but in deterministic approach. 

The paper is organized as follows. In the next section 
is presented the modeling of the wind as a non-
stationary stochastic process and the separation of the 
two components above mentioned. Section 3 presents 
the control system structure in relation with the 
seasonal wind speed component, as well as the model 
of the system around the optimal point ensured by the 
low frequency control loop. It is proved that this 
system is invariant. The optimal control law 
depending on the turbulence component is designed 
in Section 4. In the Section 5, some simulation results 
are presented. The concluding remarks end this 
paper. 

2. WIND SPEED MODELING 

The wind speed is considered as consisting of two 
elements: 

- a slowly varying mean wind speed of hourly 
average. Usually, this component is modelled as a 
Rayleigh distribution (Leithead, et al, 1991): 

(2) ( )
21 2e av

Rp v a v −= = ⋅ ⋅  

where v is the hourly wind speed average and a is 
related to the very long time scale mean speed;  

-  a rapidly varying turbulence component, 
modelled by a normal distribution with mean value 
equal to zero and standard deviation proportional to 
the current value of the average wind speed. The 
dynamic properties of the turbulence component are 
given by the Von Karman power spectrum: 

(3) ( )
( )[ ] 652

2

1

4750

vL

vL.Svv
ω

σω
+

=  

where σ  is the turbulence intensity and L is the 
turbulence length scale. 

2.1. VAN DER HOVEN’S LARGE BAND MODEL 
OF THE WIND SPEED  

In studies concerning the hybrid Wind-Diesel 
systems, a reference model for the wind speed is 
considered the Van der Hoven’s experimental model 
(Lipman, 1990), reproduced in Figure 1. The power 
spectrum of the horizontal wind speed is calculated 
in the range from 0.0007 to 900 cycles/hour, which is 
more than six decades. The knowledge of the spectral 
characteristic of the wind speed in such a frequency 
range would bring solutions to wind simulation 
research, as it contains the spectral domain that 
describes the medium and long-term variations, as 
well as the spectral range of the turbulence 
component. 

 

Fig.1. Van der Hoven’s spectral model 

Starting from an experimental characteristic, the 
numerical procedure used for the wind speed 
generation is based on the sampling of the spectrum. 

We can also remark that the turbulence component in 
the Van der Hoven model is a stationary stochastic 
system. 

Let us consider 11 += N,i,iω , the discrete angular 
frequency and ( )ivvS ω  the corresponding values of 
the power spectral density. The harmonic at the 
frequency ωi has the amplitude  

(4) ( ) ( )[ ] [ ]iiivvivvi ωωωSωS
π

A −⋅+= ++ 112
12  

and the phase, iϕ , randomly generated. The wind 
speed, v(t), is simulated by the relation 

(5) ( ) ( )
0

cos
N

i i i
i

v t A ω t ϕ
=

= +∑  

where 00 00 == ϕω ,  and vA =0  is the mean wind 
speed, calculated on a time horizon greater than the 
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largest period in Van der Hoven's characteristic (i.e., 
12 ωπ=T ). 

2.2. VON KARMAN’S MODEL OF THE 
TURBULENCE COMPONENT 

Experimental data show that the turbulence 
component characteristic depends on the value of the 
mean speed. (Welfonder, et al., 1997) deals with a 
simulation scheme, where the non-stationary 
turbulence component is modelled using a shaping 
filter, which colours a synthetically produced white 
noise. The transfer function of the shaping filter, 
according to the von Karman‘s turbulence spectrum 
(Welfonder, et al., 1997; Ekelund, et al., Leithead, et 
al., 1991) is: 

(6) ( )
( )5 61

F
F /

F

K
H jω

j Tω
=

+
 

where the KF and TF parameters depends on the 
medium speed of the wind. 

2.3. LARGE BAND MODELLING OF THE WIND 
SPEED 

The solutions used hereafter are based on the 
following remarks, issued from the previous sections 
(Nichita, et al, 2001): 

-  the method based exclusively on the Van der 
Hoven model leads to incorrect results, as the 
turbulence component is not modeled as a non-
stationary process; 

-  the procedure used in (Welfonder, et al., 1991), 
based on the von Karman spectrum, can model the 
turbulence component as a non-stationary process, 
but doesn’t reproduce the slow fluctuations, that 
correspond to the low frequency domain in the 
spectral characteristic of  the wind speed. 

 
( ) ( )

30

0
cosml i i i

i
v t A tω ϕ

=
= +∑  
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Fig.2. Non-stationary wind speed generation 

Consequently, we combine the low frequency model 
of Van de Hoven’s characteristic with a non-
stationary turbulence model. We made the 
assumption that the discrete frequency values f0=0, 

f1=0.001 cycles/h,..., f30=4 cycles/h correspond to the 
spectral range that describes medium and long term 
wind speed evolution and the turbulence component 
(i.e. the short-term component) is given by the 
spectral range between 5 cycles/hour and 1000 
cycles/hour, that corresponds to frequencies f31 ,… 
,fN, with N=55. In this case, v(t) becomes, 

(7) ( ) ( ) ( )ml tv t v t v t= +  

where 

(8) ( ) ( )
30

0
cosml i i i

i
v t A ω t ϕ

=
= +∑  

is the medium and long term component and vt(t) is 
the turbulence component. We have considered that 
Van de Hoven’s model describes correctly only the 
wind variation on a large time scale, so vml(t) will be 
used in the final wind model. 

The high frequency model is presented in Fig. 2 
(Welfonder, et al., 1991), (Nichita, et al, 2001) in 
which has been noted: 

kσ,v – the shape of the regression curve that 
statistically describes the relation between the mean 
value vml and the standard deviation vσ ; 

TF – the time constant of the filter and is dependent 

of the vml: F
ml

LT
v

=  and L is the turbulence length 

scale; 

K – the static gain obtained from the condition that 
the variance of the coloured noise wc(t) is equal to 1: 

2
1 1
2 3

FTK
TsB ,

π⋅
≅ ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

 where B designates the beta 

function and Ts is sampled period. 

3. LOW FREQUENCY SYSTEM STRUCTURE 

The structure of the system that assures optimal 
conversion regime, according to the medium and 
long term component of the wind speed, is presented 
in Fig. 3. 

There, the block named F is an fourth order 
Butterworth filter, which extracts the slowly varying 
component ( ) ( )mlv t v t≡ , from the wind speed, 

( )v t . 

According to this variable, the optimal reference 
( )opt tΩ  is generated, in a shaft’s speed control 

loop.  
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Fig.3. Low frequency system structure 

This is accomplished using the electrical generator’s 
load system (Fig. 4). The controlled generator torque  

( )tΓ  has two components: ( )tΓ  generated by the 

low frequency loop PI controller and ( )t∆Γ  
according to the wind speed turbulence component, 
generated by the optimal LQ controller (see Section 
5). 

Wind Power 
Generator 

utility 
grid 

Γref(t) 

Ω,Γ 
Wind 
speed 

Electromagnetic 
Torque  

PE 

( ) ( ) ( )ref t t tΓ Γ ∆Γ= +
 

Fig.4. Electrical generator’s load system 

The non – linear wind generator model is given by 
the movement equation: 

(9) ( )d
d eJ ,v
t
Ω Γ Ω Γ= −  

where the wind torque is: 

(10) 
( )2 31

2
p

e
C

R v
λ

Γ ρπ
Ω

=   

and J is the drive train inertia. 

We linearise the model around an operating point: 

(11) e e
e v

v
Γ Γ

∆Γ ∆Ω ∆
Ω

∂ ∂
= +
∂ ∂

 

(12) ( ) ( )
2 3

2
1
2

e '
p p

R v C C
Γ

ρπ λ λ λ
Ω Ω

∂ ⎡ ⎤= −⎣ ⎦∂
 

(13) ( ) ( )
2 21 3

2
e '

p p
R v C C

v
Γ

ρπ λ λ λ
Ω

∂ ⎡ ⎤= −⎣ ⎦∂
 

After normalizing the variables involved, the 
linearised model of the wind turbine is: 

(14) ( )2e v∆Γ γ ∆Ω γ ∆= ⋅ + − ⋅  

where e e e ; ; v v v∆Γ ∆Γ Γ ∆Ω ∆Ω Ω ∆ ∆= = =  

(15) 
( ) ( )

( )
'
p p

p

C C

C

λ λ λ
γ

λ

⎡ ⎤−
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 

We notice that model’s parameters are relied on the 
variable γ , which depends directly on the tip speed 
ratio λ . The low frequency loop aims to maintain 
the tip speed ratio to its optimal value, 7optλ = . Due 
to the inherent dynamic errors of the loop, the 
variable γ  will have small variations around a 
constant value. Thus, the wind system, which 
represents the fixed part of the high frequency 
optimal system, is practically time invariant (see 
numerical validation results in Section 5). 
Consequently, the high frequency optimal control 
does not involve an adaptive strategy. 

4. OPTIMAL CONTROL STRUCTURE 

We consider the controlled system 

(16) 
( ) ( ) ( ) ( )
( ) ( )

x t Ax t Bu t v t

y t C x t ;

= + +⎧⎪
⎨

=⎪⎩

&
 

where ( )v t  is a measurable disturbance. 

The imposed performance criterion has the general 
form below: 

( ) ( ) ( ) ( ){ }
0

1 d
2

T T

t

I y t Sy t u t Ru t t
∞

= +∫
 

1L−

2L−

B x Ax w= +& C

( )v t
û

u w

w Bu v= +

+

+

+
Σ Σ

y

x

 

Fig.5. Optimal control system structure 

The optimal control law is assured by the matrix 
coefficients 1L  and 2L , presented in Fig. 5 which are 
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determined from the following Riccati equation 
(Athans, M. and Falb, P., 1966) 

(17) 1 0T TPBR B P A P PA Q− − − − =  

and the associated equation 

(18) ( )1 0T TA PBR B p Pv−− + =  

where TQ C SC= . 

The expressions of the above mentioned coefficients: 
(19) 1

1
TL R B P−=  

(20) ( ) 11 1
2

T T TL R B A PBR B p
−− −= − −  

Our optimized system has the state equation 

(21) 2 1

T T T
x x v u

J J J
γ γ

∆
−

= + −&  

where TJ J Ω
Γ

=  is the total inertia of the linearized 

system. With the following notations: 

(22) 2 1

T T T
v v; a ; b

J J J
γ γ
∆

−
= = = −  

the system becomes: 

(23) x ax bu v= + +&  

where x ; u∆Ω ∆Γ= = . 

The combined performance criterion is 

(24) ( )( ) ( )2 2

0

doptI t t tα λ λ ∆Γ
∞
⎡ ⎤= − +⎢ ⎥⎣ ⎦∫  

With 

(25) ( ) ( ) ( )t t v t∆λ ∆Ω ∆= −  

after some elementary calculus, it becomes 

(26) ( )2 2

0

2 dI x qx u tα
∞

= − +∫  

where 

(27) ( ) ( )
2

TJ
q t v tα

γ
= −

−
 

Thus, we are dealing with a general LQ problem, 
with the following correspondences: 

(28) 1A a; B b; Q ; Rα= = = =   

The Riccati equation becomes: 

(29) 2 2 2 0P b aP α− − =  

with the solution: 

(30) 2
1 2, TP J γ γ α⎛ ⎞= ± +⎜ ⎟

⎝ ⎠
 

The associated equation is: 

(31) ( )2 0
2

TJ
a Pb p Pv α

γ
− + − =

−
 

After some elementary calculus, we obtain the 
expressions of the coefficients L1 and L2: 

(32) 2
1L γ γ α= − ± +  

(33) 
( )2

2 2

2
L

γ γ α γ α

γ α

⎛ ⎞± + − −⎜ ⎟
⎝ ⎠=

+
 

Therefore, the optimal control structure presented in 
Fig. 5, becomes (Fig. 6):  
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Fig.6. Optimal LQ control structure 

5. SIMULATION RESULTS 

In Fig. 7 are presented the results of the wind speed 
generation (a) using the model presented in Section 
2, and the two components, the medium and long 
term component (b) and the turbulence component 
(c), obtained after filtering. 
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Fig.7. Wind speed (a), low frequency component (b) 
and turbulence component (c) 
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Fig.8. Variations of tip speed ratio λ  (a) and of the 
γ  coefficient (b) 

The Fig. 8 presents the simulation results of the low 
frequency loop. 
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Fig.9. Variations of tip speed ratio (a) and 
electromagnetic torque (b) for 0 1.α =  

The first figure shows small variations of the tip 
speed ratio around its optimal value due to the 
variations of the medium and long term component 
of the wind speed. That implies small variations 
around the wind turbine’s optimal functional point. 
This system will be optimized in the high frequency 
loop, improving the energetic efficiency of the wind 
power system and the compliance of its drive train. 
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Fig.10. Variations of tip speed ratio (a) and 
electromagnetic torque (b) for 0 7.α =  
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As shown in Section 3, parameter γ depends 
exclusively of the tip speed λ. Therefore, the low 
frequency loop will maintain γ practically time 
invariant, with small variations around a constant 
value (Fig. 7,b). 

The combined performance criterion (24) shows that 
the trade-off between the energetic efficiency 
(minimization of ( )t∆λ ) and mechanical stress 

(minimization of ( )t∆Γ ) is realized by choosing the 
ponderation factor α. 

The Fig.9, 10, 11 and 12 permits a qualitative 
analysis of the optimization results and show how the 
variances of the tip speed ratio and electromagnetic 
torque depends on α. The tip speed ratio variance 
increases with the value of α, while the 
electromagnetic torque variance decreases. 
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Fig.11.  Variations of tip speed ratio (a) and 
electromagnetic torque (b) for 2α =  

6. CONCLUDING REMARKS 

The frequency separation principle adopted in the 
wind modeling has resulted in a particular 
configuration of the control structure – as an 
alternative to the adaptive structures – consisting of 
two different loops: the maximum energetic 
efficiency loop, governed by the low frequency wind 
speed component, and an optimal control loop, 
governed by the turbulence component. The 
optimality of the whole is defined in relation with the 
trade-off between energy conversion maximization 
and the control input minimization that determines 
the mechanical stress of the drive train. This optimal 
problem is treated within a complete linear quadratic 
deterministic approach, whose effectiveness was 

proved by numerical simulation. Note the flexibility 
of the proposed control structure in relation with the 
type of the drive system used. 
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Fig.12. Variations of tip speed ratio (a) and 
electromagnetic torque (b) for 5α =  
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