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ENERGETIC OPTIMAL CONTROL OF ADJUSTABLE DRIVE SYSTEMS 
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Abstract: In the paper is developed a new control strategy for the adjustable speed 
drives. The strategy consists in the energetic optimal control of the dynamic regimes as 
starting, stopping and reversing. The main developed problems: formulation of 
energetic optimal problem, solution, experimental results via simulation and some 
considerations concerning the use of the control. The optimal developed solution can be 
applied for the both AC and DC drives, but only for linear systems. 
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1. INTRODUCTION 

Actually variable speed drives with DC and AC 
induction machines are operated using different types 
of automatisation as: scalar, vectorial and direct 
torque control. This control provides a good dynamic 
response and stationary behavior, but it does not say 
anything about the conversion efficiency. It is very 
well-known that in the transient behavior, as starting, 
stopping or reversing, the efficiency of the energy 
conversion is diminished down to the value smaller 
than 70 percent, while in the stationary state it is 
greater. The objective of the research is to develop a 
new control, of optimal type. This optimal control 
must minimize the energy which will be consumed 
over the dynamic periods. The synthesis of the 
optimal control law is accomplished with the 
experimental results, via the simulation procedure. 

2. DRIVES MODELS 

A DC adjustable speed drive by armature voltage 
controlled,Fig. 1, is an invariant controllable dynamic 
system described by the differential equations 

(1) 
0 1
1

0

m m

A A
A

A A

s

A

F c
J J

Rc i
i L L

u( t ) m ( t )J
L

ωω
⎡ ⎤⎡ ⎤ − −⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⋅ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥+ ⋅ + ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

o

o

 

  c 

  c 

-F/J 

( )u t  

( )e t−  

( )Ai t
( )sm t

( )m tω  

Fig.1. Mathematical model of DC drive 
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The differential equations (1) are of the form 

(2) )t()t()t()t( GwBuAxx ++=
o

 

 where: 

 the state x(t) is given by 
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)t(mω and )t(iA being the angular speed and 
armature current; 

 u(t) is the armature voltage as the input vector; 

 w(t) is the load torque )t(ms as the perturbation 
vector. 

The dynamical equations of the induction machine, 
IM, in rotor field based coordinates is 
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in which:  
isd     the flux component current; 
isq       the torque component current; 
imR   the rotor magnetizing current; 
ωm   the instantaneous electrical angular velocity of 

the rotor; 
me   electromagnetic torque of the induction motor; 
ms   load torque; 

q     the angular positions of the rotor field; 
J     the combined inertia of the motor and load; 
F    the viscous friction coefficient; 
M   mutual inductance between the stator and rotor 

d,q equivalent windings; 
τR    the rotor time constant; 
σR   the rotor leakage factor; 
p     the number of pole pairs.  

The decoupling of the control loops, the torque and 
the flux, is performed by rotoric field orientating. 
Maintaining the magnetizing current, imR, at the 
constant value the mathematical model of the IM 
becomes linear 
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with specific constants 
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or in the same form as for DC drive, the equation (2), 
in which the state vector 
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the control vector u(t)= [ ])t(isq  and the perturbation 
vector w(t)=ms(t). 
The structures of the mathematical models using CSI 
and VSI are presented in Fig. 2 and Fig. 3 

Fig.2. The mathematical model of the rotor oriented induction motor associated with CSI 
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Fig.3. The mathematical model of the rotor oriented induction motor associated with VSI

3. PROBLEM FORMULATION 

In order to improve the conversion efficiency, an 
optimal control law is proposed by using linear 
quadratic criteria. The objectives of the optimal 
control law are: 

 smooth response ; 

 no overshoot; 

 the fast compensation of the load torque; 

 the energies minimization. 

Taking into account the minimizing of the energy 
dissipation in the motor for dynamic regimes the 
functional 
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is considered, where S and Q are a 2x2 positive 
semidefinite matrices, R is a 1x1 positive definite 
matrix and t1 is the specified terminal time, 
corresponding to an actual duration of the dynamic 
regime. 

3.1. DC drives 

The first term of the cost functional (8) is often called 
the terminal cost and its purpose is to guarantee that 
the square error between the final free state )t( 1x  
and the desired final state  
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is small. 

Thus, by setting 
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In the same way, by setting 
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the second term of (8) is related by equation 
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and it minimizes the  energy expended in the 
armature winding , which signifies the most 
important constituent part of the drive dissipation 
energies. 

The third term of (8) given by 
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where 

(15) r = R  

keeps the control u(t) in admissible limits. 

3.2. AC drives 

In the same way, for the case of IM, by setting 
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the second term of (8) is related by equation 
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and it minimizes the oscillations of rotoric field 
spatial angle. 

The third term of (8) is given by 
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where r=R . This term weights the cost of the 
control sqi   and, in the same time, minimizes the 
energy expended in the motor windings.  

Therefore, the optimal control problem is with free 
end point, specified terminal time and without 
constraints. The magnitude constraints for the control 
and state can be solved by adequate choice of the 
weighting matrices S, Q and R. Finally, the quadratic 
linear problem consists of finding the optimal control 
u(t), ]t,0[t 1∈  which minimizes the functional (8) 
corresponding to the dynamic system (1) or (5), with 
initial x(0) state, such as the transition from initial 
phase (0, x(t0)) be closed to the final phase (t1, x(t1)). 

4. THE SOLUTION OF THE OPTIMAL 
CONTROL PROBLEM 

The solution of the problem, such as formulated 
above, exists and is unique if the system is 
controllable and completely observable and matrices 
Q, S ≥ 0 and R>0. Via variational calculus, the 

Hamiltonian of the optimal control problem is given 
by 
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in which p(t)∈ℜ2  is the costate vector. 

The optimal control minimizing the cost functional 
(8) is given by 
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From equation (20) optimal control u*(t) can be 
written in the form 

(21) 1* T( t ) ( t )−= −u R B p  

The state and costate vectors are the solutions of the 
canonical system 
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with boundary conditions: 

- the initial state  =(0) 0xx ; 

- the transversality of the costate vector 
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The integration of the canonical system leads to the 
well-known matrix differential equation, Riccati 
type, and the associate vectorial equation. The 
integration of these two equations is a very difficult 
work because the Riccati equation is nonlinear, its 
solution is recursive one that can be calculated only 
backward in time. Moreover, the backward 
computation needs to know a priori the variation of 
the perturbation vector w(t) on the duration of the 
dynamic rating t1. The last condition is too strong and 
it can not be accomplished. 

In order to avoid these difficulties is developed a 
nonrecursive solution of the Riccati equation using 
two linear transformations. The first transformation 
changes actual time t into t1-t, time remaining until 
the end of the optimal process. Thus by setting 
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(24) 1t tτ = −  

and new state, costate and perturbation vectors 
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the canonical system (22) becomes 
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The system (27) can be integrated via the 
fundamental matrix. The solution is given by 
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The solution (28) has a certain advantage because it 
can be calculated at the actual time t. Thus, using 
(24), the fundamental matrix becomes 

(32) 1 10( , ) ( t t ,t )τ = −Φ Φ  

On the other hand, the solution needs only the value 
of the perturbation vector w(t) at any time t. This 
condition can be achieved by using a torque observer. 

The main difficulty is the calculus of the fundamental 
matrix )(τΦ  because the matrix M contains both 
types of the eigenvalues, positive and negative. Thus, 
the fundamental matrix has two types of terms: 

 )tt( 1e −Λ , which has a large value; 

 )tt( 1e −−Λ , which has a small value. 

The manipulation of these values for the period [0, t1] 
becomes too difficult, if not impossible. 

The second transformation is made in order to use 
only the negative eigenvalues of the matrix M. Let be 
a new state vector defined by 
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is the matrix of the eigenvectors corresponding to 
eigenvalues of the matrix M. 

The canonical system (27) with (33) becomes 
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is the matrix of the positive eigenvalues of matrix M. 

After the algebraic manipulations, the solution of the 
system (35) becomes 
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where H1 and H2  result from (35) and 
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Now, with the condition (39) we can write a relation 
between )(τc  and )(τd  in the form 
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Coming back to the system (22) via transformations 
(25) and (33), the optimal control law, at any moment 
t, is given by 
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Fig.4. The structure of the optimal control law 

in which P(t1 - t) is the solution of the differential 
matrix Riccati equation and the matrices K1 and K2 
are calculated via P(t1 - t). 

Obviously, the solution (44) is analytical and 
supposes the knowledge of the perturbation 
w(t)=ml(t) at any time t. Now, because the solution is 
nonrecursive, the perturbation ml(t) can be estimated 
by using a torque observer. 

The structure of the optimal control law is presented 
in Fig.4 for the case of IM.  

The optimal control law has three components: the 
state feedback, the input component to achieve the 
desired state x1 and the compensating feed-forward 
of the perturbation w(t). 

5. ANALYSIS OF THE OPTIMAL SOLUTION 

The simulation results are presented for the AC drive. 

5.1. Starting process 

The optimal control law (44) and the model (5) were 
numerically simulated by discretization using Z -
transform and zero order hold for a starting of a 0.75 
[kW], 3000 [r.p.m.] induction motor under a rated 
load torque of 2.38 [Nm].

 
The initial state condition for the starting process is 
the null state 
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Fig.5-12. The experimental results 
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where nω is nominal angular velocity and the q angle 
is free. 

The experimental results are presented in Fig. 5-12 
where: 

- sA sB sCi ,i ,i  are the phase currents; 
-isq       the torque component current; 
-nm   the speed of the rotor; 
-me   electromagnetic torque of the induction motor; 

-ms   load torque, initial 0.5 Nm and a step of 2.38 
Nm at 0.4 second; 
-q     the angular position of the rotor field. 

In Fig.13-15 is presented the same starting process 
under the rated load torque, 2.38 Nm value. 

In the fig.16 the comparative energies of both control 
methods (classical U/f - optimal control) is depicted , 
in which Wp1 the input energy, Wu the output energy, 

Wcu1 the energy expended in the stator windings, 
Wcu2 the energy expended in the rotor windings and 
Wfv the viscous friction energy.

 From energetic point of view it could be noticed that 
the output energy is the same in both controls while 
the input energy decreases significantly, about 27%,  
in optimal control case. The decline of stator copper 
losses, Wcu1, is less significant, about 6%. The 
decline of the input energy can be explained only by 
the change of the speed rising form and, obviously, 
decreasing of the mechanical losses, Fig. 9 and 14. 

5.2. Breaking process 

The initial state condition for the breaking process is 
the nominal angular velocity and the q angle (the 
rotor magnetizing flux angle) value at the nominal 
torque (ms=MN), corresponding with the final value 
for a starting process i.e. 
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Fig.17. Breaking process 

Fig.18. Reversing process  

Fig.19. Current iSA 

The final values are null state 
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The experimental results are presented in Fig. 17 at 
the level of speed [rpm]. 

5.3. The reversing process 

The initial condition for the reversing process is the 
final condition for the starting process, equation (47).  
The final state condition is 

(49) 
( )
( )

1

1 0
Nt

q t
ω ω⎡ ⎤ −⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 

in which the final value of rotor current magnetizing 
flux angle is free. The variations of the speed and the 
phase current iSA are depicted in Fig.18 and 19.  The 
comparative energies of both control methods 
(classical U/f - optimal control) presented in Fig.20, 
where the notations are the same as in Fig.16. 

From energetic point of view it could be noticed that 
the conclusions are the same as in the case of a 
starting. Thus the output energy is the same in both 
controls while the input energy decreases 
significantly, about 29%, in optimal control case. The 
decline of stator copper losses, Wcu1, is less 
significant, about 6%. The decline of the input 
energy can be explain in the same way , by the 
different form of the speed variation than in the case 
of classical U/f. 

5.4. The weighting matrices 

The optimal control is with free end point and 
without constraints. The magnitude constraints for 
the state and control were solved by adequate choice 
of the weighting matrices. For example in Fig. 21 is 
presented the influence of the R matrix value on the 
component torque current isq and speed for a starting 
process. The influences of the S and Q matrices are 
studied in the same way. 

6. CONCLUSIONS 

1) The solution of the optimal control exists for the 
both cases, DC and AC    drives. It is a feasible 
solution and the saved energy is significant, between 
7-28%. 

2) The copper losses reductions are based on the 
improving of the transversal stator current profile. 

3)  It could be noticed a major influence of the speed 
dynamic to input energy. Therefore, an additional 
energy reduction could be obtained by speed 
reference imposing. 

4) By realizing the energy reduction the thermal 
regime is improve such that either could obtain the 
overload permission or increasing the motor life. 

5) By motor energy reduction, due to the transversal 
stator current form, the energy in transformer, 
converter and in cables is decreasing. 
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Fig.21. The influence of R matrix 

6) By obtain the optimal control solution in one 
sample time, the load torque oscillations are 
eliminated, the number of power semiconductor 
devices switching is minimizing. 
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