Revisiting the Competitiveness of Romanian Manufacturing Industry

Ovidiu RUJAN
Dana GÂRDU
Faculty of International Business and Economics
Academy of Economic Studies - Bucharest

Abstract. Since the early 1990s the Romanian manufacturing industry has improved in many ways. This headway concerns the labour-intensive sector rather than the technology-intensive one. Apart from local entrepreneurship, foreign direct investments (FDI) have been instrumental in enhancing industrial competitiveness. The Lisbon Agenda revival and Romania’s EU accession will be further inducements for Western businesses to shift production here to fight back both low-cost producers (typically from emerging Asia) and more quality-oriented producers (typically from OECD countries). Hopefully, the FDI spillover effects will send positive vibrations across the economy, and tone down the asymmetry at the core of the manufacturing industry.

Keywords: competitiveness, manufacturing industries, FDI spillovers

1. The Lisbon Agenda and its Implications for Romania

The European Union (EU) has long harboured under the specter of falling competitiveness in the world economy (Tsoukalis, 2003). Back in 2000 EU policy-makers embarked upon an ambitious, yet unsubstantiated endeavour to build “the most competitive knowledge-intensive economy” in a decade (www.euractiv.com). Five years later the Spring European Council (March 2005) revised the Lisbon Strategy downwards and postulated “a partnership for economic growth and jobs” counting on member states’ genuine involvement via national action plans and appointments of national representatives on this front (a Mr. or Ms. Lisbon).

Indeed, recent statistics support the view that the EU as a whole is not faring so well although no less than six member countries (Denmark, Sweden, Germany, Finland, the United Kingdom, and the Netherlands) populate the top-10 of the 2007-2008 Global Competitiveness Index computed by the World Economic Forum in Davos. The EU-25 economic growth rate is half the world average (estimated at about 4 % in 2005), while the two Asian champions (China and India) are racing at more than double this average, and the US economy is humming along at that same average (Lancelot et al., 2006). Specialized indicators suggest that the EU-25 is doing even worse in point of the knowledge economy as they score well below the OECD average in terms of research and development (R&D) intensity. Further, the other two triad poles by far surpass the EU in the overall share of ICT (information and communication technologies) in GDP, the GDP percentage dedicated to venture capital and the share of private investment in R&D. Specialized human resources (students enrolled in tertiary education as well as researchers and scientists) and the average number of patents per 1,000 inhabitants rank higher in the US than in the EU (Amable, 2006).
After the fall of the Iron Curtain countries in Central and Eastern Europe (CEE) have altered both
their industrial structure and the geographical orientation of their international trade. To be more
precise, they mostly abandoned heavy industry, the spearhead of the now defunct Soviet model,
and moved into low value-added industries (mining and labour-intensive manufacturing
industries, such as textiles and garments) and directed more than half of their exports toward the
European Economic Community (EEC) (Bal, 2006). Since the mid 1990s foreign direct
investments (FDI) from the EU multinational companies (MNC) have helped upgrade these
economies’ international specialization, particularly in Poland and Hungary, with more countries
to join the club later on.

Romania became an attractive destination for FDI in the manufacturing industry thanks to its
business-friendly trade and investment regimes, highly qualified, yet fairly cheap human
resources, its geostrategic positioning in-between Western Europe and the Middle East and, last
but not least, its recent EU membership, and subsequent inclusion into the Single Market.

Since high wages in the EU have been uplifting cost structures, the incentive to tap into labour
inputs from developing nations is quite understandable. Actually, EU businesses are just one step
in their further trajectory eastwards. For instance, some of the apparel industry in such high-cost
locations like Italy and France has first moved to Romania, then Turkey, and ultimately, China
and Vietnam, as eager producers are chasing the “lowest-priced needle” (de Jonquières, 2004,
The Economist, 23 February 2006. On the other hand, as employees are headed towards Western
locations to maximize their salaries, these intermediate markets (in the CEE) may face a shortage
of workforce, hence the need for “imports” from low-cost locations. With Romanians leaving for
more sunny destinations (Italy and Spain), the Romanian authorities are thinking about fetching
Chinese workers to fill this void.

Speaking about Romania’s mining and manufacturing industries, they both followed an upward
trend in between 1990-2004 in value terms at constant prices. The former was downsized by
more than half in order to cut heavy losses (some coal mines in Valea Jiului were closed down).
A break-down of the Romanian manufacturing industry between 1994-2004 shows that the food
and beverage industry accounts for the lion’s share (60% of the total), with metallurgy (12%),
metallic constructions and products (3-4%), textile products (about 3 %), and others (about 18%)
completing the picture. Hence, Romania’s manufacturing structure is more related with the
Common Agricultural Policy (CAP) rather than with the new economy. Ironically enough, this
plays out in Romania’s favour: supposedly, it will find it easier to bridge the knowledge-geared
gap given the statu quo in the EU: CAP, the old Community “relic” still took up more than 45%
of the EU budget in 2004 as opposed to a slim 3% for R&D (Drăgan, 2005). However, the EU is
moving away from its CAP focus as it contemplates building a competitive edge over its
international competitors, and is “lisbonising” both its trade and cohesion policies to this effect
(www.euractiv.com).

2. Industrial Competitiveness - a Tentative Definition

To begin with, competitiveness cannot be conceived of in a vacuum, rather it is an outgrowth of
the interactions among the players operating in a certain market. Once artificial barriers to market
entry are removed (typically, restrictions on foreign trade and investments), supply-side
parameters come into play. Therefore, competitiveness may be analyzed along two dimensions:
costs and quality. By and large, corporate strategy studies have pointed to three main vistas
whereby a company can secure a competitive advantage, namely: differentiation, cost cutting,
and focus (in Michael Porter’s parlance). In today’s global economy, ever increasing competitive
pressure turns knowledge and/or costs into basic ingredients of industrial competitiveness.
Competitiveness involves benchmarking and may be gauged in terms of a business’s capability to gain market share, especially in the international arena, as well as via its export performance as captured by its profitability.

Going back to the three aforementioned ways to acquire a competitive advantage, empirical evidence has shown that strategy mixes are commonplace. For instance, supplying a good quality-price ratio has been at the root of Japan’s economic success story, which has ultimately outraged the Western world, and prompted them to wield both trade and exchange rate policy-related weapons (Gilpin, 2000) at the “culprit” to contain the invasion of low-cost products. At the time this country’s exports claimed a 22% share of the American market (Rumbaugh and Blancher, 2004). This neomercantilist development model has been taken over by a handful of East Asian countries (the new industrialized economies, the new dragons, and China), albeit their economic takeoff occurred at different points in time, and did not reach the scope of their master’s sophistication. As Japan refined its industrial structure and moved out of less evolved industries, its dutiful disciples picked them up, and strove to capitalize upon their large pool of cheap relatively skilled labour, undervalued currencies and low cost of capital (due to high household savings and intermediation). FDI has been a major ingredient in the East Asian Miracle, and, looking at the bright side, it seems to be a competitiveness engine (in point of cost-saving and quality improvement) vehicle for ex-Communist countries, too.

3. Long-Term Average Costs and Industry Structure

The world economy is slowing down at present, with energy prices on the rise and the US dollar weakening (see Appendix 1). Over the past five years oil prices have exhibited an average growth rate of 9%, and outstripped the real interest rate, which makes perfect sense in the case of non-renewable resources. The quick pace of technological change entails a shift towards oligopoly market structures where a small number of players typically resort to collusive behaviour, especially in point of price setting at high levels and market splitting (Gilpin, 2000). This holds true for such high-tech industries as ICT, the aerospace industry, biotechnologies, chemical products, etc. In this case, long-run average costs tend to take a U-shaped form lopsided to the right (Shy, 1995), meaning that it will prove unprofitable for one single firm to serve the market beyond the minimum point Q^*, i.e. the minimum efficiency scale.

However, certain scholars claim that the knowledge economy can yield increasing returns to scale (Bal, 2006) and thus legitimate natural monopolies. In this case, average costs over the long term decline, and one company alone may take control of the whole market. Microsoft seemed an adequate illustration of this case, nonetheless, anti-trust legislation in both the US and the EU has opposed this move. Pure and perfect competition will emerge as a natural choice if the long-run average cost curve is U-shaped or horizontal: in the former case, this means that numerous small companies will be more effective in serving the market up to the Q^* point provided their production amounts to just a small share of the total industry output, whereas in the latter case, big and small companies alike will incur constant average unit costs in doing so (Shy, 1995).

4. Mapping out Romania’s Champion Manufacturing Industries

According to a major study (Voiculescu and Mereuţă, 1998), electrical and mechanical products (products made of metal; machinery and transport materials; scientific, medical, optical, measurement and control equipment; sound recording and reproducing devices) claimed the highest share in Romania’s manufacturing output and exports in the 1980s. Insofar as changes in market share in industrialized countries’ imports accurately reflect comparative advantage, Romania was highly specialized in the following product groups in the early 1980s: agricultural

1 The relationship in question is $P_t = P_0 \cdot e^{it}$, where i is the real interest rate and t stands for time.
equipment, railways vehicles, and household electrical appliances. Another stronghold of Romanian manufacturing industry concerned such commodity groups like apparel, textiles, footwear, leather and furniture articles. Over the same time span a top of Romania’s most competitive manufacturing industries accounting for over 0.5% of advanced countries’ total imports included the following items: furniture, fertilizers, garments, shoes, leather shoes and articles, steel products, agricultural equipment.

In 1993 Romania’s top exports in excess of 1 % of the international market featured products as diverse as manufactured fertilizers, cast iron and steel profiles, railways vehicles, leather manufactures, steam engines, furniture and miscellaneous furniture articles, vegetable fats. In the late 1990s, the most high-performing components of manufacturing industry according to another indicator (i.e. profitability) corresponded to the following CANE divisions (see Appendices 2 and 3): 18, 33, 31, 32, 25, 19, 26, 20, 36, 30, and 28. A remarkably complex study by Professor Ovidiu Nicolescu (2007) enlarged upon Cezar Mereuţă’s (2003) analysis model to pinpoint the Romanian manufacturing industry’s competitive branches. Six assessment criteria were used to this effect the corresponding values thereof (over the 1998-2004 time span) are compared to the overall manufacturing industry’s averages. Thus, the treatment of competitiveness is twofold: both a static and a dynamic approach are used. In this last case, industries pertaining to the following CAEN divisions are placed in a favourable position: 18, 19, 26, 27, 31, and 36. In a strictly dynamic approach the industries that fall under the scope of the 24 and 35 divisions are also well positioned.

If the Revealed Comparative Advantage (RCA) indicator is used over the 1990–2006 period to analyze the export performance of various manufacturing industry components, several product groups score well throughout, namely: the wooden products group (IX), the textiles group (XI), the footwear group (XII), the metals group (XV)\(^1\), the miscellaneous group, and especially the furniture group (XX) score high on the comparative advantage front. As far as the other groups are concerned, this indicator is placed on a downward trend, and even scores negative values. Likewise, the footwear group (XII) exhibits an upward positive comparative advantage due to cheap qualified labour: foreign investors capitalized upon this by introducing high-performing production lines. And yet, market changes may induce them to shift their plants and corresponding technologies elsewhere. The metals group (XV) also features comparative advantages, poised on a descending trend, though.

Generally speaking, comparative advantages mostly occur in labour-intensive groups, while the technology-intensive group (XVI) is fraught with comparative disadvantages. This asymmetry notwithstanding, it is undeniable that the manufacturing industry has made huge strides over the past two decades: its performance is encapsulated in a surge in exports, FDI and, hence, in relative overall competitiveness.

Concluding Remarks

Especially in the wake of Romania’s joining the EU, foreign businesses in search of cheap production locations and sales avenues can play a critical role in the transfer of technology and management practices and send positive vibrations across the manufacturing industries by upgrading the quality of human resources and local suppliers. Up until now some of these spillover effects of FDI have been actualized, and complemented local efforts to boost competitiveness. And yet, Romanian companies have a long way to cover in point of refining production technologies, employees’ skills, and management techniques. Motivating highly qualified staff may ultimately fashion out a competitive advantage if they can be a vehicle for Western-style effectiveness.

\(^1\) Except for last year (2006), when it scored negative.
Appendix 1:
Trends in stock market prices for gold (A), the Dow Jones Index (B), oil (C) and the US dollar (D) between 10.11.2002 – 9.11.2007

A. Gold prices (US$/ounce)
maximum level 841.10
minimum level 320.10

B. Dow Jones Index
maximum level 14164.53
minimum level 7524.06

C. Oil price (US $/barrel)
maximum level 95.03
minimum level 22.56

D. US$/$€ exchange rate
maximum level 1.676
minimum level 0.904

Source: Spiegel online, 11.11.2007
Appendix 2: CANE Divisions

<table>
<thead>
<tr>
<th>Activities</th>
<th>CANE Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Food and beverages"</td>
<td>15</td>
</tr>
<tr>
<td>"Tobacco products"</td>
<td>16</td>
</tr>
<tr>
<td>"Textile products"</td>
<td>17</td>
</tr>
<tr>
<td>"Clothing products"</td>
<td>18</td>
</tr>
<tr>
<td>"Leather goods and footwear"</td>
<td>19</td>
</tr>
<tr>
<td>"Wood and wooden products processing (excluding furniture)"</td>
<td>20</td>
</tr>
<tr>
<td>"Pulp, paper and cardboard"</td>
<td>21</td>
</tr>
<tr>
<td>"Publishing houses, polygraphy, recording and copying"</td>
<td>22</td>
</tr>
<tr>
<td>"Petroleum processing, coal coking and treatment of nuclear fuels"</td>
<td>23</td>
</tr>
<tr>
<td>"Chemical substances and products"</td>
<td>24</td>
</tr>
<tr>
<td>"Rubber products and plastics products"</td>
<td>25</td>
</tr>
<tr>
<td>"Construction materials manufacturing and other products of non metallic minerals"</td>
<td>26</td>
</tr>
<tr>
<td>"Metallurgy"</td>
<td>27</td>
</tr>
<tr>
<td>"Metallic construction and metal products"</td>
<td>28</td>
</tr>
<tr>
<td>"Machinery and equipment (excluding electrical and optical equipments)"</td>
<td>29</td>
</tr>
<tr>
<td>"Computers"</td>
<td>30</td>
</tr>
<tr>
<td>"Electric machinery and apparatus"</td>
<td>31</td>
</tr>
<tr>
<td>"Radio, TV and communication equipment apparatus"</td>
<td>32</td>
</tr>
<tr>
<td>"Medical, precision, optical and watchmaking instruments and "apparatus"</td>
<td>33</td>
</tr>
<tr>
<td>"Means and road transport"</td>
<td>34</td>
</tr>
<tr>
<td>"Means of transport not included at road transport"</td>
<td>35</td>
</tr>
<tr>
<td>"Furniture and other industrial activities non – classified elsewhere"</td>
<td>36</td>
</tr>
</tbody>
</table>

Appendix 3

SECTIONS OF THE COMBINED NOMENCLATURE (C.N.)

<table>
<thead>
<tr>
<th>C.N. CODE</th>
<th>Live animals and animal products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vegetable products</td>
</tr>
<tr>
<td></td>
<td>Animal or vegetable fats and oils</td>
</tr>
<tr>
<td></td>
<td>Prepared foodstuffs, beverages and tobacco</td>
</tr>
<tr>
<td></td>
<td>Mineral products</td>
</tr>
<tr>
<td></td>
<td>Chemical products</td>
</tr>
<tr>
<td></td>
<td>Plastics, rubber and articles thereof</td>
</tr>
<tr>
<td></td>
<td>Raw hides and skins, leather, furskins and articles thereof</td>
</tr>
<tr>
<td></td>
<td>Wood and articles of wood, excluding furniture</td>
</tr>
<tr>
<td></td>
<td>Pulp of wood, paper, paperboard and articles thereof</td>
</tr>
<tr>
<td></td>
<td>Textiles and textile articles</td>
</tr>
<tr>
<td></td>
<td>Footwear, headgear, umbrellas and similar articles</td>
</tr>
<tr>
<td></td>
<td>Articles of stone, plaster, cement, ceramic, glass and similar materials</td>
</tr>
<tr>
<td></td>
<td>Base metals and articles of base metal</td>
</tr>
<tr>
<td></td>
<td>Machinery and mechanical appliances; electrical equipment; sound and image recorders and reproducers</td>
</tr>
<tr>
<td></td>
<td>Vehicles and associated transport equipment</td>
</tr>
<tr>
<td></td>
<td>Optical, photographic, cinematographic, medical or surgical instruments and apparatus and similar; clocks and watches; musical Instruments; parts and accessories thereof</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous manufactured articles</td>
</tr>
<tr>
<td></td>
<td>Goods non-included in Combined Nomenclature other sections</td>
</tr>
</tbody>
</table>

146
References

1. Amable, B., Innovation et compétitivité en Europe, CEPREMAP (Centre pour la recherche économique et ses applications), 2006
3. Drăgan, G., Uniunea Europeana intre federalism si interguvernamentalism: Politici comune ale UE, ASE Publishing House, Bucharest, 2005
15. ***, “Material Fitness – How Europe’s Leading Home for Clothing and Shoes Is Adapting to Low-Cost Competition from China” in The Economist, 23 February 2006